首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquinone (Coenzyme Q10, CoQ10), a yellow-to-orange-colored lipophilic substance having nutraceutical value, was extracted from dried biomass of Pseudomonas diminuta using supercritical carbon dioxide (SC-CO2). The effect of different operational parameters (temperature, pressure, and extraction time) and addition of co-solvent on SC-CO2 extraction of CoQ10 was studied in detail. The solubility parameter of CoQ10, CO2, and CO2 with ethanol and methanol as co-solvents was calculated and validated with experimental results. Theoretically, ethanol and methanol had significant effect as co-solvent, and the difference between the two was only marginal. A maximum recovery of 22.33% was obtained using pure SC-CO2 at 40 °C, 150 bar, and run time of 60 min. Ethanol as co-solvent at 3 mL/g of dried biomass at 40 °C and 150 bar increased the recovery from 22.33 to 68.57%. Further optimization of the extraction conditions by Box–Behnken design effectively increased the recovery to 96.2%. The optimized conditions were a temperature of 38 °C, pressure of 215 bar, and run time of 58 min.  相似文献   

2.
J. Muñoz  M. J. Merrett 《Planta》1988,175(4):460-464
Air-grown cells of a marine, small-celled (2 m diameter) strain of Stichococcus bacillaris contained appreciable carbonic-anhydrase activity but this was repressed when cells were grown on air enriched with 5% (v/v) CO2. Assay of carbonic-anhydrase activity using intact cells and cell extracts showed all activity was intracellular in this Stichococcus strain. Measurement of inorganic-carbon-dependent photosynthetic O2 evolution at pH 5.0, where CO2 is the predominant form of inorganic carbon, showed that the concentration of inorganic carbon required for half-maximal rate of photosynthetic O2 evolution [K0.5(CO2)] was 4.0 M for both air- and CO2-grown cells. At pH 8.3 the K0.5(CO2) was 0.3 mM for air-grown and 0.6 mM for CO2-grown cells. Sodium ions did not enhance bicarbonate utilization. Measurement of the internal inorganic-carbon pool (HCO 3 +CO2) by the silicone-oil-layer centrifugal filtering technique showed that air- and CO2-grown cells were able to concentrate inorganic carbon up to 20-fold in relation to the external medium at pH 5.0 but not at pH 8.3. In this alga the high affinity for CO2 and inorganic-carbon accumulation in CO2- and air-grown cells results from active CO2 transport that is not dependent on carbonic-anhydrase activity.Abbreviation Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid  相似文献   

3.
J. Munoz  M. J. Merrett 《Planta》1989,178(4):450-455
Inorganic-carbon transport was investigated in the eukaryotic marine microalgaeStichococcus minor, Nannochloropsis oculata and aMonallantus sp. Photosynthetic O2 evolution at constant inorganic-carbon concentration but varying pH showed thatS. minor had a greater capacity for CO2 rather than HCO 3 utilization but forN. oculata andMonallantus HCO 3 was the preferred source of inorganic carbon. All three microalgae had a low affinity for CO2 as shown by the measurement of inorganic-carbon-dependent photosynthetic O2 evolution at pH 5.0. At pH 8.3, where HCO 3 is the predominant form of inorganic carbon, the concentration of inorganic carbon required for half-maximal rate of photosynthetic O2 evolution [K 0.5 (CO2)] was 53 M forMonallantus sp. and 125 M forN. oculata, values compatible with HCO 3 transport. Neither extra- nor intracellular carbonic anhydrase was detected in these three microalgal species. It is concluded that these microalgae lack a specific transport system for CO2 but that HCO 3 transport occurs inN. oculata andMonallantus, and in the absence of intracellular carbonic anhydrase the conversion of HCO 3 to CO2 may be facilitated by the internal pH of the cell.  相似文献   

4.
Conditions for extraction and assay of ribulose-1,5-bisphophate carboxylase present in an in vivo active form (initial activity) and an inactive form able to be activated by Mg2+ and CO2 (total activity) were examined in leaves of soybean, Glycine max (L.) Merr. cv Will. Total activity was highest after extracts had preincubated in NaHCO3 (5 millimolar saturating) and Mg2+ (5 millimolar optimal) for 5 minutes at 25°C or 30 minutes at 0°C before assay. Initial activity was about 70% of total activity. Kact (Mg2+) and Kact (CO2) were approximately 0.3 millimolar and 36 micromolar, respectively. The carry-over of endogenous Mg2+ in the leaf extract was sufficient to support considerable catalytic activity. While Mg2+ was essential for both activation and catalysis, Mg2+ levels greater than 5 millimolar were increasingly inhibitory of catalysis. Similar inhibition by high Mg2+ was also observed in filtered, centrifuged, or desalted extracts and partially purified enzyme. Activities did not change upon storage of leaves for up to 4 hours in ice water or liquid nitrogen before homogenization, but were about 20% higher in the latter. Activities were also stable for up to 2 hours in leaf extracts stored at 0°C. Initial activity quickly deactivated at 25°C in the absence of high CO2. Total activity slowly declined irreversibly upon storage of leaf homogenate at 25°C.  相似文献   

5.
Bärlocher  M.O.  Campbell  D.A.  Al-Asaaed  S.  Ireland  R.J. 《Photosynthetica》2003,41(3):365-372
We investigated seasonal patterns of photosynthetic responses to CO2 concentrations in Spartina alterniflora Loisel, an aerenchymous halophyte grass, from a salt marsh of the Bay of Fundy (NB, Canada), and from plants grown from rhizome in controlled-environment chambers. From late May to August, CO2 compensation concentrations () of field-grown leaves varied between 2.5–10.7 cm3(CO2) m–3, with a mean of 5.4 cm3(CO2) m–3. From September onwards field leaves showed CO2 compensation concentrations from 6.6–21.1 cm3(CO2) m–3, with a mean of 13.1 cm3 m–3 well into the C3–C4 intermediate range. The seasonal variability in did not result from changing respiration, but rather from a sigmoidal response of net photosynthetic rate (P N) to applied CO2 concentration, found in all tested leaves but which became more pronounced late in the season. One explanation for the sigmoidal response of P N to external CO2 concentration could be internal delivery of CO2 from roots and rhizomes to bundle sheath cells via the aerenchyma, but the sigmoidal responses in S. alterniflora persisted out to the tips of leaves, while the aerenchyma extend only to mid-leaf. The sigmoidicity persisted when CO2 response curves were measured from low to high CO2, or from high to low CO2, and even when prolonged acclimation times were used at each CO2 concentration.  相似文献   

6.
Hans Schnyder 《Planta》1992,187(1):128-135
A photosynthate labelling method is presented which takes advantage of the natural difference in carbon-isotope composition () which exists between atmospheric CO2 (-8) and commercially available compressed CO2. Carbon dioxide with -4.0 and –27.9%., respectively, has been used for labelling. A plant growth cabinet served as the labelling compartment. CO2-free air was continuously injected at a rate of up to 54m3·h–1. Dilution of cabinet CO2 by CO2-free air was counterbalanced by addition of CO2 with known constant . Since the labelling-cabinet atmosphere was continuously exchanged at a high rate, photosynthetic carbon-isotope discrimination was fully expressed. In order to study the distribution of carbon acquired by the plant during a defined growth period, the of CO2 was modified by replacing, for example, atmospheric CO2 by CO2 with –27.9%. and the weight and 5 of plant carbon pools was monitored over time. In such an experiment the change of CO2 was followed by a rapid change of the of sucrose in mature flag-leaf blades of wheat (Triticum aestivum L.). The 5 of sucrose stabilized near –51%., indicating complete exchange by current photosynthate. In contrast 83% of the total carbon in mature flag-leaf blades was not exchanged after 14 d continuous labelling. Differential labelling of pre- and post-anthesis photosynthate indicated that 13% of grain carbon originated from pre-anthesis photosynthesis. Carbon-isotope discrimination and its consideration in experimentation and labelling data evaluation are discussed in detail. Since the air supplied to the labelling cabinet is dry and free of CO2, carbon-isotope discrimination and carbon turnover and partitioning can be studied over a wide range of CO2 concentrations (0–2600 cm3 · m–3) and vapor-pressure deficits.Abbreviation and Symbol PPFD photosynthetic photon flux density - carbon-isotope composition Dr. G. Schleser (Forschungszentrum Jülich, FRG) and Professor S. Hoernes (Mineralogisch-Petrologisches Institut, Universität Bonn) for valuable help and advice during the initial stages of the project and Professor W. Kühbauch (Institut für Pflanzenbau, Universität Bonn) for continuing support. Technical assistance of Ute Labusch, Petra Biermann, Ludwig Schmitz and Thomas Gebbing is gratefully acknowleged.
  相似文献   

7.
A solvent engineering strategy was applied to the lipase-catalyzed methanolysis of triacylglycerols for biodiesel production. The effect of different pure organic solvents and co-solvent mixtures on the methanolysis was compared. The substrate conversions in the co-solvent mixtures were all higher than those of the corresponding pure organic solvents. Further study showed that addition of co-solvent decreased the values of |log Pinterface − log Psubstrate| and thus led to a faster reaction. The more the values of |log Pinterface − log Psubstrate| decreased, the faster the reaction proceeded and the higher the conversion attained. Different co-solvent ratio was further investigated. The co-solvent mixture of 25% t-pentanol:75% isooctane (v/v) was optimal, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. There was no obvious loss in lipase activity even after being repeatedly used for 60 cycles (720 h) with this co-solvent mixture as reaction medium. Other lipases and lipase combinations can also catalyze methanolysis in this co-solvent mixture. Furthermore, other vegetable oils were also explored for biodiesel production in this co-solvent mixture and it had been found that this co-solvent mixture media has extensive applicability.  相似文献   

8.
We recently isolated an acetate-oxidizing rodshaped eubacterium (AOR) which was capable of oxidizing acetate to CO2 when grown in coculture with the hydrogenotrophic methanogen Methanobacterium sp. strain THF. The AOR was also capable of growing axenically on H2CO2 which it converted to acetate. Previous results for the acetate oxidizing coculture showed isotopic exchange between acetate and CO2, suggesting that the AOR was using a pathway for acetate oxidation resembling a reveral of the acetogenic (carbon monoxide) pathway. In this study, it was found that production of 14CO2 from 14CH3COO- by the coculture was inhibited by 200 M cyanide, while methanogenesis from H2–CO2 was unaffected, implying the involvement of carbon monoxide dehydrogenase (CODH) in acetate oxidation. CODH was present at 0.055 mol methyl viologen reduced min-1 mg-1 protein in extracts of Methanobacterium sp. strain THF, but was present in higher levels in the acetate oxidizing coculture and in the AOR grown axenically and on H2–CO2 (2.0 and 6.4 mol min-1 mg-1 protein respectively). Anaerobic activity stains for CODH in native polyacrylamide gels from the AOR coculture showed components co-migrating with bands from both organisms, as well as an additional band in extracts of the coculture. Formate dehydrogenase (FDH) was present in both the AOR coculture and monoculture but not in extracts of H2–CO2 grown cells of Methanobacterium sp. strain THF. Formyltetrahydrofolate (FTHF) synthetase was not detectable in extracts of the AOR monoculture or coculture, although it was found in high amounts in extracts of H2–CO2 grown cells of the thermophilic acetogen Acetogenium kivui. Extracts of H2–CO2 grown cells of the AOR showed a fluorescence spectrum typical of pterin derivatives. Bioassay for folates showed levels to be at anabolic rather than catabolic levels. It is possible that the AOR uses pterins distinct from folate for catabolism. Isocitrate dehydrogenase, a citric acid cycle enzyme, was also present in the AOR, but at anabolic levels and -ketoglutarate dehydrogenase was not detectable.Abbreviations (AOR) acetate-oxidizing rod - (CODH) carbon monoxide dehydrogenase - (FDH) formate dehydrogenase - (FTHF) formyltetrahydrofolate  相似文献   

9.
The active species of CO2 , i.e. CO2 or HCO 3 –(H2CO3) utilized by enzymes catalyzing ferredoxin-linked carboxylation reactions was determined. The enzyme investigated was pyruvate synthase from Clostridium pasteurianum (EC 1.2.7.1; Pyruvate: ferredoxin oxidoreductase). Data were obtained which were compatible with those expected if CO2 is the active species.The dissociation constant (K S) of the enzyme-CO2 complex was measured. At pH 7.2 K Sfor CO2 of pyruvate synthase was found to be approximately 5 mM.Abbreviations Fd ferredoxin No distinctions are made between CO2, H2CO3, HCO 3 and CO 3 = when the symbol CO2 is used.  相似文献   

10.
The growth and photosynthetic responses ofPterocladiella capillaceato NH4, PO4, CO2-enrichment, pH, irradiance and temperature were evaluated for winter or summer plants cultivated under laboratory and outdoor settings. In the laboratory, using a gradient table, optimal growth temperature and irradiance for winter plants occurred at 10–20 °C and 100 mol photon m–2s–1, averaging 24.3% per week. The optimal growth conditions found for summer plants were 10–20 °C and 20 mol photon m–2s–1, averaging 29.0% per week. In a pH-stat cultivation system photosynthetic rates and growth rates were largely unaffected by pH in the range 6.5–8.5, however, they both decreased significantly above 8.5. In outdoor settings, using 40 L tanks,P. capillaceawas more responsive to the frequency the algae were fed with NH4and PO4rather than the relative concentrations of these nutrients. The average growth rates during winter were 28.3% and 12.5% per week when NH4and PO4were included once and twice a week for 24-h periods, respectively, while summer plants grew 15.0% and 25.3% per week at these nutrient regimes. Algae grown in seawater (containing 13.8 ± 1.8 M CO2) or CO2-enriched seawater (averaging 33.7 ± 13.2 M CO2) had similar growth rates or even reduced productivity under CO2-enrichment during winter. Concentrations of chlorophyllawere in average significantly higher in winter as compared to summer especially when nutrients were included twice a week. Phycoerythrin levels were also higher for plants fed with nutrients twice a week particularly during summer time. Although agar yields were limited and not seasonally dependent, this study shows high growth capacity forP. capillaceaas compared to previous investigations. Future mariculture prospective using current tank cultivation techniques for this species will likely depend on market demands for high quality agar.  相似文献   

11.
Photoautotrophic micropropagation of Russet Burbank Potato   总被引:2,自引:0,他引:2  
The photoautotrophic micropropagation of potato cv. Russet Burbank was investigated. Single node microcuttings were grown for four weeks on Murashige and Skoog (MS) medium with or without sucrose (30 g l–1) in the growth room at 21/19 °C day/night temperature, with 16-h photoperiod at 150 mol m–2 s–1, with or without supplemental CO2 at 1500 l l–1. A 20% increase in the number of nodes per stem (from 7.5 to 9.4) and a 50% increase in stem dry weight were observed in cultures grown on media with sucrose and in CO2 enriched atmosphere comparing to the conventionally micropropagated cultures or the cultures grown photoautotrophically on media without sucrose but in air supplemented with 1500 l l–1CO2. Stems of these cultures (from media with sucrose in CO2 enriched air) almost doubled in length the stems of cultures from the other two treatments. No significant differences were observed between Control (MS medium supplemented with sucrose, 30 g l–1) and photoautotrophic cultures coming from MS medium with no sucrose grown under 1500 l l–1 of CO2. Photoautotrophic cultures produced stems averaging 43.3 mm, with 7 nodes and weighing 9.2 mg (dry weight), similar to conventionally grown in vitro cultures (47.9 mm with 7.5 nodes, 9.7 mg dry weight). Growers may consider photoautotrophic culturing of potato in areas where the high sterility levels are difficult to maintain. Supplementing air in the growth room with 1500 l l–1 of CO2 could be beneficial for potato plantlet production even on media containing sucrose since it significantly improved quality, size and biomass of produced plantlets, speeding up the multiplication.  相似文献   

12.
A number of bacteria belonging to the genera Proteus, Providencia, Pseudomonas and Erwinia have been tested for their capacity to oxidize -amino acids to their corresponding α-keto acids. Members of the Proteus and the Providencia genera were active towards various -amino acids. Immobilized cell preparations of Providencia sp. PCM 1298 were shown to form up to 80 mg α-keto-γ-methiol butyric acid from -methionine per g of gel preparation (containing 4% w/w cells) per day. The productivity was highly dependent on the size of the beads. Oxygen appeared to be the rate-limiting substrate and oxygen transfer rates of 3–4 μmol cm−2 h−1 were calculated. The entrapment of activated charcoal to remove H2O2 formed during the oxidation extended the half-life of the immobilized biocatalyst considerably. A decrease in -amino acid oxidase [ -amino acid: oxygen oxidoreductase (deaminating); EC 1.4.3.2] activity during operation could be compensated for by reinoculation of the alginate-entrapped cells in fresh growth medium, allowing use of these preparations of immobilized bacterial cells for more than one month.  相似文献   

13.

Microalgae are capable of producing up to 70% w/w triglycerides with respect to their dry cell weight. Since microalgae utilize the greenhouse gas CO2, they can be cultivated on marginal lands and grow up to ten times faster than terrestrial plants, the generation of algae oils is a promising option for the development of sustainable bioprocesses, that are of interest for the chemical lubricant, cosmetic and food industry. For the first time we have carried out the optimization of supercritical carbon dioxide (SCCO2) mediated lipid extraction from biomass of the microalgae Scenedesmus obliquus and Scenedesmus obtusiusculus under industrrially relevant conditions. All experiments were carried out in an industrial pilot plant setting, according to current ATEX directives, with batch sizes up to 1.3 kg. Different combinations of pressure (7–80 MPa), temperature (20–200 °C) and CO2 to biomass ratio (20–200) have been tested on the dried biomass. The most efficient conditions were found to be 12 MPa pressure, a temperature of 20 °C and a CO2 to biomass ratio of 100, resulting in a high extraction efficiency of up to 92%. Since the optimized CO2 extraction still yields a crude triglyceride product that contains various algae derived contaminants, such as chlorophyll and carotenoids, a very effective and scalable purification procedure, based on cost efficient bentonite based adsorbers, was devised. In addition to the sequential extraction and purification procedure, we present a consolidated online-bleaching procedure for algae derived oils that is realized within the supercritical CO2 extraction plant.

  相似文献   

14.
The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition.  相似文献   

15.
An intracellular β-xylosidase from the thermophilic fungus Sporotricum thermophile strain ATCC 34628 was purified to homogeneity by Q-Sepharose and Mono-Q column chromatographies. The protein properties correspond to molecular mass and pI values of 45 kDa and 4.2, respectively. The enzyme is optimally active at pH 7.0 and 50 °C. The purified β-xylosidase is fully stable at pH 6.0–8.0 and temperatures up to 50 °C and retained over 58% of its activity after 1 h at 60 °C. The enzyme hydrolyzes β-1,4-linked xylo-oligosaccharides with chain lengths from 2 to 6, releasing xylose from the non-reducing end, but is inactive against xylan substrates. The apparent Km and Vmax values from p-nitrophenyl β-d-xylopyranoside are 1.1 mM and 114 μmol p-nitrophenol min−1 mg−1, respectively. Alcohols inactivate the enzyme, ethanol at 10% (v/v) yields a 30% decrease of its activity. The enzyme is irreversibly inhibited by 2,3-epoxypropyl β-d-xylobioside while alkyl epoxides derived from d-xylose were not inhibitors of the enzyme. The enzyme catalyses the condensation reaction using high donor concentration, up to 60% (w/v) xylose.  相似文献   

16.
Plants are endangered at their roots by soil-dwelling rhizophagous insects. These below-ground living herbivores may orient to the source of carbon dioxide (CO2), an ubiquitous volatile released by respiring plant roots. Here, we studied the interaction of CO2 and other plant root-derived chemical stimuli with regard to the chemical orientation of the polyphagous larvae of Melolontha melolontha L. (Scarabaeidae). A soil arena was developed that enabled both determination of the actual soil CO2 concentration and the behavioural response of an insect to (a) CO2 gradients per se, (b) chemical stimuli released from respiring, undamaged roots of plants potted into vermiculite in this arena and (c) combinations of CO2 gradients and root-derived stimuli. In a root-free arena, larvae of M. melolontha oriented to the source of synthetic CO2. However, similar CO2 gradients generated by host plant roots did not attract the larvae. Neither did a synthetic CO2 gradient combined with aqueous extracts from rhizospheres with undamaged plant roots elicit an attractive effect. Our data suggest that orientation of cockchafer larvae within CO2 gradients generated by respiring roots is ‘masked’ by an aqueous extract from a rhizosphere with undamaged roots. The results emphasise that effects of behaviour modifying plant-derived compounds need to be investigated against the background of naturally co-occurring chemicals. The significance of our results for orientation of soil living insects is discussed with respect to abiotic conditions in natural soil and the role of soil microorganisms for the attractiveness of plant roots.  相似文献   

17.
Mesophyll cells, protoplasts, and protoplast extracts of Digitaria sanguinalis were used for comparative studies of light-dependent CO2 fixation. CO2 fixation was low without the addition of organic substrates. Pyruvate, oxaloacetate, and 3-phosphoglycerate induced relatively low rates (10 to 90 μmoles/mg chlorophyll·hr) of CO2 fixation when added separately. However, a highly synergistic relationship was found between pyruvate + oxaloacetate and pyruvate + 3-phosphoglycerate for inducing light-dependent CO2 fixation in the mesophyll preparations. Highest rates of CO2 fixation were obtained with protoplast extracts. Pyruvate, in combination with oxaloacetate or 3-phosphoglycerate induced light-dependent rates from 150 to 380 μmoles of CO2 fixed/mg chlorophyll·hr which are equivalent to or exceed reported rates of whole leaf photosynthesis in C4 species. Concentrations of various substrates required to give half-maximum velocities of CO2 fixation were determined, with the protoplast extracts generally saturating at the lowest substrate concentrations. Chloroplasts separated from protoplast extracts showed little capacity for CO2 fixation. The results suggest that CO2 fixation in C4 mesophyll cells is dependent on chloroplasts and extrachloroplastic phosphoenolpyruvate carboxylase.  相似文献   

18.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

19.
An isocratic reversed-phase high-performance liquid chromatographic method for the simultaneous determination of denaverine and its N-monodemethyl metabolite (MD 6) in human plasma is described. The assay involves the extraction with an n-heptane–2-propanol mixture (9:1, v/v) followed by back extraction into 12.5% (w/w) phosphoric acid. The analytes of interest and the internal standard were separated on a Superspher RP8 column using a mobile phase of acetonitrile–0.12 M NH4H2PO4–tetrahydrofuran (24:17.2:1, v/v), adjusted to pH 3 with 85% (w/w) phosphoric acid. Ultraviolet detection was used at an operational wavelength of 220 nm. The retention times of MD 6, denaverine and the internal standard were 5.1, 6.3 and 10.2 min, respectively. The assay was validated according to international requirements and was found to be specific, accurate and precise with a linear range of 2.5–150 ng/ml for denaverine and MD 6. Extraction recoveries for denaverine and MD 6 ranged from 44 to 49% and from 42 to 47%, respectively. The stability of denaverine and MD 6 in plasma was demonstrated after 24 h storage at room temperature, after three freeze–thaw cycles and after 7 months frozen storage below −20°C. The stability of processed samples in the autosampler at room temperature was confirmed after 24 h storage. The analytical method has been applied to analyses of plasma samples from a pharmacokinetic study in man.  相似文献   

20.
Entomopathogenic nematodes of the family Steinernematidae and their mutualistic bacteria (Xenorhabdus spp.) are lethal endoparasites of insects. We hypothesized that growth of the nematode’s mutualistic bacteria in the insect host may contribute to the production of cues used by the infective juveniles (IJs) in responding to potential hosts for infection. Specifically, we tested if patterns of bacterial growth could explain differences in CO2 production over the course of host infection. Growth of Xenorhabdus cabanillasii isolated from Steinernema riobrave exhibited the characteristic exponential and stationary growth phases. Other non-nematode symbiotic bacteria were also found in infected hosts and exhibited similar growth patterns to X. cabanillasii. Galleria mellonella larvae infected with S. riobrave produced two distinct peaks of CO2 occurring at 25.6–36 h and 105–161 h post-infection, whereas larvae injected with X. cabanillasii alone showed only one peak of CO2, occurring at 22.8–36.2 h post-injection. Tenebrio molitor larvae infected with S. riobrave or injected with bacteria alone exhibited only one peak of CO2 production, which occurred later during S. riobrave infection (41.4–64.4 h post-infection compared to 20.4–35.9 h post-injection). These results indicate a relationship between bacterial growth and the first peak of CO2 in both host species, but not for the second peak exhibited in G. mellonella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号