首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
细胞核质互作是形成真核生物细胞的必经步骤,细胞核质基因组在遗传方式、突变率、倍数、重组、有效群体数等方面存在根本差异,这些差异必然与生态和进化过程互作,影响和参与维持核质基因组的协同进化.本文从生态与进化过程深度阐述了形成核质互作的理论和实际研究进展,包括核质基因连锁不平衡的进化理论、核质互作效应检测、核质互作的分子证据、核质基因渐渗与遗传谱系的差异、核质不亲和与物种形成等.理论和实际结果显示,基本进化动力(突变、选择、漂变及迁移)可不同程度地改变核质互作效应.今后研究重点就是基于核质全基因组序列筛选核质互作位点,分析位点的遗传进化属性,揭示核质互作形成的分子机制;理论上解析与核质根本差异都有互作的交配系统的角色,分析交配系统怎样影响群体核质不亲和及其导致的物种形成过程.  相似文献   

2.
物种形成是指由已有的物种通过各种进化机制进化出新物种的过程。持续不断的物种形成产生了地球上灿烂的生物物种多样性。然而,研究人员对物种形成的模式与机制的了解却非常有限。一直以来,谱系分裂被认为是最重要的物种形成模式,但在植物中,谱系融合,即通过杂交形成新物种的过程,也是一个非常重要的物种形成模式。经过几十年的研究才逐渐认识到,生殖隔离是差异适应和遗传漂变的副产品,而不是物种形成的前提。相比合子形成后隔离,合子形成前的隔离在物种形成过程中更早地发挥作用。合子形成前的隔离,尤其是生态地理的隔离是植物中最重要的隔离机制。一些基于QTLs分析的研究发现,基因组中的少数主效位点在物种形成中起了关键作用,并且这些位点往往受到自然选择的作用。适应性辐射往往发生在隆起的山脉和新形成的岛屿上,很可能与这些地方能够提供很多可利用的生态位有关。最新的物种形成理论认为,基因是物种形成的基本单位,不同的物种可以在非控制物种差异适应性状的位点上存在基因流。这一观点为植物物种形成的研究提供了新的思路。随着植物物种形成研究的深入,越来越多植物物种形成基因被分离,包括花色素苷合成通路和S-基因座上的一些关键基因,揭示了植物物种形成的分子机制。前期的研究主要集中在模式植物和农作物上,许多生态上非常有趣的非模式植物还未得到广泛的研究。在未来的研究中,还需要更多来自非模式植物的例子以全面理解植物物种形成的多样化机制。  相似文献   

3.
什么是物种?新物种是如何形成的?这些问题是生命科学研究的重大问题.物种的形成是在生殖隔离的基础上某些新的生物学性状的形成和保留,是生物进化的最基本过程,其实质是基因结构突变的积累与功能的分化. 地理隔离使群体中的基因不能交流,基因突变也会影响个体间交配趣向,从而造成交配隔离或者交配后杂合体的基因组不亲和、杂交不育甚至杂交不活,使不同的群体逐渐分化为新物种. 随着分子生物学与基因组学的飞速发展,进化生物学家已经发现一些与物种形成有关的基因-物种形成基因(speciation genes),鉴定并了解这些基因的功能,不仅能使我们在分子水平上理解新物种形成的实质和规律、而且对于我们突破种间屏障进行远缘杂交育种也有重要的理论指导意义.本文综述了目前对几个物种形成基因及其功能的研究进展,为该领域的进一步研究提供资料.  相似文献   

4.
物种形成过程是生物多样性形成的基础, 长期以来一直是进化生物学的中心议题之一。传统的异域物种形成理论认为, 地理隔离是物种分化的主要决定因子, 物种形成只有在种群之间存在地理隔离的情况下才能发生。近年来, 随着种群基因组学的发展和溯祖理论分析方法的完善, 种群间存在基因流情况下的物种形成成为进化生物学领域新的研究焦点。物种形成过程中是否有基因流的发生?基因流如何影响物种的形成与分化?基因流存在条件下物种形成的生殖隔离机制是什么?根据已发表的相关文献资料, 作者综述了当前物种形成研究中基因流的时间和空间分布模式、基因流对物种分化的影响以及生殖隔离机制形成等问题, 指出基因流存在条件下的物种形成可能是自然界普遍发生的一种模式。  相似文献   

5.
物种形成是基本的进化过程, 也是生物多样性形成的基础。自然选择可以导致新物种的产生。生态物种形成是指以生态为基础的歧化选择使不同群体分化产生生殖隔离的物种形成过程。本文首先回顾了生态物种形成的研究历史, 并详细介绍了生态物种形成的3个要素, 即歧化选择的来源、生殖隔离的形式以及关联歧化选择与生殖隔离的遗传机制。歧化选择的来源主要包括不同的环境或生态位、不同形式的性选择, 以及群体间的相互作用。生殖隔离的形式多种多样, 我们总结了合子前和合子后隔离的遗传学机制以及在生态物种形成中起到的作用。控制适应性性状的基因与导致生殖隔离的基因可以通过基因多效性或连锁不平衡相互关联起来。借助于第二代测序技术, 研究者可以对生态物种形成的遗传学与基因组学基础进行研究。此外, 本文还总结了生态物种形成领域最新的研究进展, 包括平行进化的全基因组基础, 以及基因流影响群体分化的理论基础。通过归纳比较由下至上和由上至下这两种不同的研究思路, 作者认为这两种思路的结合可以为生态物种形成基因的筛选提供更有力也更精确的方法。同时, 作者还提出生态物种形成的研究应该基于更好的表型描述以及更完整的基因组信息, 研究的物种也应该具有更广泛的代表性。  相似文献   

6.
孙琼  王嵘  陈小勇 《生物多样性》2022,30(3):21383-7066
理解物种形成机制是生态和进化领域的重要任务。得益于测序技术的快速发展, 越来越多研究发现分化种群(亚种、物种)间的基因组常呈现异质性分化景观, 存在分化基因组岛, 这被认为是基因流存在下的歧化选择引起的, 支持基因流存在下的成种假说。然而, 基因渐渗、祖先多态性的差异分选、连锁选择等其他进化过程也可导致分化基因组岛的形成。现有实证研究在解析分化基因组岛的形成机制时, 往往忽略了上述其他进化过程的作用。为此, 本文在辨析分化基因组岛相关概念的基础上, 总结了利用种群基因组数据鉴定分化基因组岛的方法, 对比了不同进化过程形成分化基因组岛的特征, 指出在区分不同机制时联用基因渐渗程度、绝对分化指数(dXY)、相对节点深度(RND)、重组率等多个指标的必要性, 归纳了物种形成过程中分化基因组岛形成机制解析的研究思路, 并对未来在生殖隔离机制上的深入探索以及实证研究的整合分析等方面进行了展望。  相似文献   

7.
边缘种群指地理分布边缘可检测到的一定数量的同种个体集合,准确评价其遗传多样性对于理解第四纪冰期后气候变化对物种边缘扩展或收缩、遗传资源保护与利用以及物种形成等有重要意义。该文探讨了维持植物边缘种群遗传多样性的进化机制,分析交配系统对物种边缘及其遗传多样性的影响,比较了边缘与中心种群遗传多样性的差异及其形成的生态与进化过程,并探讨了边缘种群遗传多样性与其所在的群落物种多样性的关系及理论基础。该文提出今后研究的重点是应用全基因组序列或转录组基因序列研究前缘-后缘种群之间或边缘-中心种群之间的适应性差异,边缘种群与所在群落其他物种之间相互作用的分子机制,深入解析边缘种群对环境的适应及边缘种群遗传多样性与群落物种多样性关系的生态与进化过程。  相似文献   

8.
被子植物自交后结籽率的降低通常由早期近交衰退(early-acting inbreeding depression)与晚期自交不亲和(self-incompatibility)导致.早期近交衰退是严格的合子后的作用机制,通常由多位点隐性有害基因的纯合导致,并在合子发育成成熟种子的过程中发生.发生在柱头表面或花柱中的自交不亲和是合子前的作用机制,而发生在子房内的晚期自交不亲和(late-acting ovarian self-incompatibility)可在合子前或合子后发生作用,与早期近交衰退很难区分.在合子前的子房内自交不亲和机制下,尽管花粉管能生长到子房甚至穿透胚珠,但通常不能形成合子.合子后的子房内自交不亲和能形成合子,但由于自交不亲和通常由单位点控制,合子败育集中发生在受精作用后的很短时间内.基于早期近交衰退和子房内自交不亲和的这种差异,己有研究提出了8种区分方法.通过解剖学方法观察授粉后生物学过程,比较自交和异交先后授粉和自交授粉处理的结籽率,以及通过一元线性回归模型考察自交和异交处理下成熟种子和败育种子数之和是否保持恒定,可以区分是合子前还是合子后过程导致的自交后种子产量降低.通过全同胞间杂交实验判断败育的遗传基础是单基因控制还是多位点有害隐性等位基因的纯和,可以区分合子后自交不亲和机制与早期近交衰退;或者通过这两种不同遗传基础导致的种子大小等表型性状的差异来区分.  相似文献   

9.
邓顺  张友军 《昆虫知识》2009,46(1):17-26
从生物学、生态和遗传的角度阐述昆虫同域物种形成过程中涉及到的可能性机制。昆虫同域种的分化与作用于同域初始种群的歧化选择密切相关,歧化选择间接导致种群生态特征和遗传特征的分化,促进同域近缘种群间的生殖隔离。同域物种形成的过程中涉及到性状替换、性选择、同型交配等机制。寄主专化型多见于昆虫同域种的分化过程中,一般以植食性昆虫为主。有关昆虫同域物种形成的检验机制有多种,归纳起来主要包括同型交配的检验、遗传漂流的量化、遗传分化程度和连锁不平衡(LD)的检测、杂交后代适合度的估算等。目前发现在许多昆虫种类中存在同域物种形成的可能性,但是有关其隔离机制并没有得到充分的解释。  相似文献   

10.
刘培生 《化石》1993,(4):2-3
自达尔文与华莱士以来的每位生物学家都承认种间生态学作用对进化的意义。1964年,埃利希和雷文提出了协同进化理论。它反映了生态学相关的不同物种之间的相互作用引起的相互进化。这一理论引起了研究者的广泛重视。近年来,随着进化生态研究的深入发展,学者们对进化过程的生态机制以及生态特性与生态关系进化规律、种间生态学作用引起的物种形成有了进一步的认识。本文仅从协同物种形成的概念出发,对协同物种形成的生态机制以及生物学意义作一简要概述。协同物种形成的概念进化在本质上是一种生态过程,是生物与环境、生物与生物之间相互作用的结果。种群分化的生态机制和物种形成的本质在于对生存条件的逐步适应。按照协同进化理论,物种间的相互作用引起的协同适应  相似文献   

11.
Gaggiotti OE 《Molecular ecology》2011,20(11):2229-2232
Understanding speciation is a fundamental aim of evolutionary biology and a very challenging one. Speciation can be viewed as the dynamics of genetic differentiation between populations resulting in substantial reproductive isolation (Gavrilets 2003). It was generally accepted that very small levels of migration prevent genetic differentiation among populations and, therefore, speciation. However, recent theoretical work showed that sympatric speciation is possible (Gavrilets 2003). Nevertheless, providing empirical evidence that gene flow occurred during speciation is challenging because several gene flow scenarios can explain observed patterns of genetic differentiation. Positive migration rate estimates alone do not prove ongoing gene flow during divergence. We also need to know whether migration took place before, during or after speciation. There is no statistical method specifically aimed at estimating gene flow timing, but several studies used the isolation with migration model (Hey & Nielsen 2004, 2007; Hey 2010b) to estimate this parameter and make inferences about speciation scenarios. It is tempting to use statistical methods to estimate important evolutionary parameters even if they do not appear explicitly in the inference model. Nevertheless, before doing so, we need to determine whether they can provide reliable results. In this issue of Molecular Ecology, Strasburg and Rieseberg (2011) present a simulation study that examines the degree to which gene flow timing estimates obtained from IMa2 (Hey 2010b) can be used to make inferences about speciation mode. Their results are sobering; gene flow timing estimates obtained in this way are not reliable and cannot be used to unequivocally establish if gene flow was ongoing during speciation.  相似文献   

12.
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.  相似文献   

13.
Understanding the factors that promote or inhibit species formation remains a central focus in evolutionary biology. It has been difficult to make generalities about the process of ecological speciation in particular given that each example is somewhat idiosyncratic. Here we use a case study of replicated ecological speciation in the same selective environment to assess factors that account for similarities and differences across taxa in progress towards ecological speciation. We study three different species of lizards on the gypsum sand dunes of White Sands, New Mexico, and present evidence that all three fulfill the essential factors for ecological speciation. We use multilocus nuclear data to show that progress toward ecological speciation is unequal across the three species. We also use morphometric data to show that traits other than color are likely under selection and that selection at White Sands is both strong and multifarious. Finally, we implicate geographic context to explain difference in progress toward speciation in the three species. We suggest that evaluating cases from the natural world that are "same same but different" can reveal the mechanisms of ecological speciation.  相似文献   

14.
An ongoing controversy in evolutionary biology is the extent to which climatic changes drive evolutionary processes. On the one hand are “Red Queen” hypotheses, which maintain that climatic change is less important than biotic interactions in causing evolutionary change. On the other hand are “Court Jester” models, which recognize climatic change as a very important stimulus to speciation. The Quaternary Period (the last 1.8 million years), characterized by multiple climatic changes in the form of glacial–interglacial transitions, offers a fertile testing ground for ascertaining whether cyclical climatic changes that operate at the 100,000-year time scale appreciably influence evolutionary patterns in mammals. Despite the increased potential for isolation of populations that should occur with multiple advances and retreats of glaciers and rearrangement of climatic zones, empirical data suggests that speciation rates were neither appreciably elevated for Quaternary mammals, nor strongly correlated with glacial–interglacial transitions. Abundant evidence attests to population-level changes within the Quaternary, but these did not usually lead to the origin of new species. This suggests that if climatic change does influence speciation rates in mammals, it does so over time scales longer than a typical glacial–interglacial cycle.  相似文献   

15.
Mark Ravinet 《Molecular ecology》2018,27(13):2781-2789
The most successful study systems are built on a foundation of decades of research on the basic biology, ecology and life history of the organisms in question. Combined with new technologies, this can provide a formidable means to address important issues in evolutionary biology and molecular ecology. Littorinid marine snails are a good example of this, with a rich literature on their taxonomy, speciation, thermal tolerance and behavioural adaptations. In August 2017, an international meeting on Littorinid evolution was held at the Tjärnö Marine Research Laboratory in Western Sweden. In this meeting review, I provide a summary of some of the exciting work on parallel evolution, sexual selection and adaptation to environmental stress presented there. I argue that newly available genomic resources present an opportunity for integrating the traditionally divergent fields of speciation and environmental adaptation in Littorinid research.  相似文献   

16.
Understanding the patterns of diversification in sexual traits and the selection underlying such diversification represents a major unresolved question in evolutionary biology. We examined the phylogenetic diversification for courtship and external genitalic characters across ten species of Timema walking‐sticks, to infer the tempos and modes of character change in these sexual traits and to draw inferences regarding the selective pressures underlying speciation and diversification in this clade. Rates of inferred change in male courtship behaviours were proportional to speciation events, but male external genitalic structures showed a pattern of continuous change across evolutionary time, with divergence proportional to branch lengths. These findings suggest that diversification of courtship behaviour is mediated by processes that occur in association with speciation, whereas diversification of genitalia occurs more or less continuously, most likely driven by forces of sexual selection.  相似文献   

17.
In this issue of Molecular Ecology, Yamasaki et al. (2020) use genetic data from extensive sampling of Rhinogobius goby fish across the Ryukyu Archipelago in Japan to demonstrate the parallel speciation of a freshwater form from an ancestral amphidromous form. They then show that ecosystem size strongly predicts the probability of speciation between the two forms across islands. In doing so, this study connects population‐level processes (microevolution) to broad‐scale biodiversity patterns (macroevolution), an important but understudied link in evolutionary biology. Moving forward, we can build on this research to (a) more directly determine how geographic, ecological and historical factors influence the different stages of the speciation process, and (b) understand whether mechanisms inferred from insular radiations extend to those on continents, where both demographic histories and environmental regimes are likely more complex.  相似文献   

18.
Understanding how speciation can take place in the presence of homogenizing gene flow remains a major challenge in evolutionary biology. In the early stages of ecological speciation, reproductive isolation between populations occupying different habitats is expected to be concentrated around genes for local adaptation. These genomic regions will show high divergence while gene exchange in other regions of the genome should continue relatively unimpaired, resulting in low levels of differentiation. The problem is to explain how speciation progresses from this point towards complete reproductive isolation, allowing genome‐wide divergence. A new study by Via and West (2008) on speciation between host races of the pea aphid, Acyrthosiphon pisum, introduces the mechanism of ‘divergence hitchhiking’ which can generate large ‘islands of differentiation’ and facilitate the build‐up of linkage disequilibrium, favouring increased reproductive isolation. This idea potentially removes a major stumbling block to speciation under continuous gene flow.  相似文献   

19.
Species concepts formalize evolutionary and ecological processes, but often conflict with one another when considering the mechanisms that ultimately lead to species delimitation. Evolutionary biologists are, however, recognizing that the conceptualization of a species is separate and distinct from the delimitation of species. Indeed, if species are generally defined as separately evolving metapopulation lineages, then characteristics, such as reproductive isolation or monophyly, can be used as evidence of lineage separation and no longer conflict with the conceptualization of a species. However, little of this discussion has addressed the formalization of this evolutionary conceptual framework for macroalgal species. This may be due to the complexity and variation found in macroalgal life cycles. While macroalgal mating system variation and patterns of hybridization and introgression have been identified, complex algal life cycles generate unique eco-evolutionary consequences. Moreover, the discovery of frequent macroalgal cryptic speciation has not been accompanied by the study of the evolutionary ecology of those lineages, and, thus, an understanding of the mechanisms underlying such rampant speciation remain elusive. In this perspective, we aim to further the discussion and interest in species concepts and speciation processes in macroalgae. We propose a conceptual framework to enable phycological researchers and students alike to portray these processes in a manner consistent with dialogue at the forefront of evolutionary biology. We define a macroalgal species as an independently evolving metapopulation lineage, whereby we can test for reproductive isolation or the occupation of distinct adaptive zones, among other mechanisms, as secondary lines of supporting evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号