首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inositol 1,4,5-trisphosphate (InsP3) receptor was purified from bovine cerebellum and reconstituted in liposomes composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (1:1) successfully. No effect of Ca2+ concentration on [3H]-InsP3 binding to unreconstituted InsP3 receptor could be observed either at 4°C or at 25°C, whereas the effect of [Ca2+] on reconstituted InsP3 receptor depended on the temperature. The Ca2+ concentration outside the proteolipsome ([Ca2+]o) had no detectable effect on InsP3 binding to InsP3 receptor at 4°C. In contrast, with increase of [Ca2+]o from 0 to 100 nmol/L at 25°C, the InsP3 binding activity increased gradually. Then the InsP3 binding activity was decreased drastically at higher [Ca2+]o and inhibited entirely at 50 μmol/L [Ca2+]o. Conformational studies on intrinsic fluorescence of the reconstituted InsP3 receptor and its quenching by KI and HB indicated that the global conformation of reconstituted InsP3 receptor could not be affected by [Ca2+]o at 4°C. While at 25°C, the effects of 10 μmol/L [Ca2+]o on global, membrane and cytoplasmic conformation of the reconstituted InsP3 receptor were different significantly from that of 100 nmol/L [Ca2+]o.  相似文献   

2.
Two tiny hairpin DNAs, CORE (dAGGCTTCGGCCT) and AP2 (dAGGCTXCGGCCT; X: abasic nucleotide), fold into almost the same tetraloop hairpin structure with one exception, that is, the sixth thymine (T6) of CORE is exposed to the solvent water (Kawakami, J. et al., Chem. Lett. 2001, 258–259). In the present study, we selected small peptides that bind to CORE or AP2 from a combinatorial pentapeptide library with 2.5 × 106 variants. On the basis of the structural information, the selected peptide sequences should indicate the essential qualifications for recognition of the hairpin loop DNA with and without a flipped base. In the selected DNA binding peptides, aromatic amino acids such as histidine for CORE and glutamine/aspartic acid for AP2 were found to be abundant amino acids. This amino acid preference suggests that CORE-binding peptides use π–π stacking to recognize the target while hydrogen bonding is dominant for AP2-binding peptides. To investigate the binding properties of the selected peptide to the target, surface plasmon resonance was used. The binding constant of the interaction between CORE and a CORE-binding peptide (HWHHE) was about 1.1 × 106 M?1 at 25°C and the resulting binding free energy change at 25°C (ΔG°25) was ?8.2 kcal mol?1. The binding of the peptide to AP2 was also analyzed and the resulting binding constant and ΔG°25 were about 4.2 × 104 M?1 and ?6.3 kcal mol?1, respectively. The difference in the binding free energy changes (ΔΔG°25) of 1.9 kcal mol?1 was comparable to the values reported in other systems and was considered a consequence of the loss of π–π stacking. Moreover, the stabilization effect by stacking affected the dissociation step as well as the association step. Our results suggest that the existence of an aromatic ring (T6 base) produces new dominant interactions between peptides and nucleic acids, although hydrogen bonding is the preferable mode of interaction in the absence of the flipping base. These findings regarding CORE and AP2 recognition are expected to give useful information in the design of novel artificial DNA binding peptides.  相似文献   

3.
The nucleocapsid protein NCp7, which is the major genomic RNA binding protein of human immunodeficiency virus type 1, plays an important role in several key steps of the viral life cycle. Many of the NCp7 activities, notably the nucleic acid annealing and the genomic RNA wrapping ones, are thought to be linked to a nonspecific binding of NCp7 to its nucleic acid targets. The mechanism of these activities is still debated but several clues are in favor of an intermediate aggregation of nucleic acids by NCp7. To check and characterize the nucleic acid aggregating properties of NCp7, we investigated the interaction of NCp7 with the model RNA homopolymer, polyA, by quasielastic light scattering and optical density measurements. The ordered growth of monodisperse large particles independently of the nucleic acid size and the almost complete covering of polyA by NCp7 strongly suggested an ordered aggregation mechanism. The aggregate kinetics of growth in the optimum protein concentration range (≥2 μM) were governed by a so-called Ostwald ripening mechanism limited by transfer of NCp7-covered polyA complexes from small to large aggregates. The aggregation process was strongly dependent on both Na+ and Mg2+ concentrations, the optimum concentrations being in the physiological range. Similar conclusions held true when polyA was replaced by 16S + 23S ribosomal RNA, suggesting that the NCp7 aggregating properties were only poorly dependent on the nucleic acid sequence and structure. Finally, as in the NCp7 annealing activities, the basic regions of NCp7, but not the zinc fingers, were found critical in nucleic acid aggregation. Taken together, our data indicate that NCp7 is a highly efficient nucleic acid aggregating agent and strengthen the hypothesis that aggregation may constitute a transient step in various NCp7 functions. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
To identify and assess the specificity of the 1,25-dihydroxyvitamin D3 chick intestinal cytoplasmic receptor's nucleotide binding site, a competitive DNA-cellulose binding assay was utilized. Unlike other steroid hormone receptors, the 1,25-dihydroxyvitamin D3-receptor complex binds homologous DNA at 4 °C and does not appear to undergo thermal- or salt-induced activation. Data are presented which suggest that receptor binding discriminates between double-stranded DNA and RNA but is not specific with respect to DNA base sequences. However, DNA base sequence selectivity by 1,25-dihydroxyvitamin D3-receptor complexes is observed using synthetic polydeoxyribonucleotides, particularly, poly(dA-dT) · poly(dA-dT) and poly(dA) · poly(dT). Preference for double-stranded over single-stranded DNA was also observed. Consistent with this finding, both actinomycin D and ethidium bromide caused a dose-dependent inhibition of receptor binding to DNA-cellulose. It is concluded that the 1,25-dihydroxyvitamin D3-receptor complex has specificity for AT-rich segments of double-stranded DNA and that this interaction is not merely electrostatic, but also involves hydrophobic interaction with the major and/or minor grooves of the DNA helix.  相似文献   

5.
The interaction of the Trp–Sm(III) complex with herring sperm DNA (hs‐DNA) was investigated with the use of acridine orange (AO) dye as a spectral probe for UV‐vis spectrophotometry and fluorescence spectroscopy. The results showed that the both the Trp–Sm(III) complex and the AO molecule could intercalate into the double helix of the DNA. The Sm(III)–(Trp)3 complex was stabilized by intercalation into the DNA with binding constants: K?25°C = 7.14 × 105 L·mol?1 and K?37°C = 5.28 × 104 L·mol?1, and it could displace the AO dye from the AO–DNA complex in a competitive reaction. Computation of the thermodynamic functions demonstrates that ΔrHm? is the primary driving power of the interaction between the Sm(III)(Trp)3 complex and the DNA. The results from Scatchard and viscometry methods suggested that the interaction mode between the Sm(III)(Trp)3 complex and the hs‐DNA is groove binding and weak intercalation binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Following dialysis against distilled water, the 16 S ribosomal RNA of Escherichia coli is unable to interact with 30 S subunit protein S4 at 0 °C. The dialysed RNA recovered this capacity, however, when heated at 40 °C in the presence of 0.02m-MgCl2 prior to addition of the protein. Furthermore, its sensitivity to ribo-nuclease markedly declined and its sedimentation rate increased as a consequence of this treatment. Although no concomitant changes in secondary structure were detected by absorbance and fluorescence techniques, the rearrangement of a small number of base-pairs was not excluded. Kinetic measurements revealed that binding site reactivation satisfies the first-order rate law and that the process is highly temperature-dependent, exhibiting an Arrhenius activation energy of 40,800 cal/mol. Together, these data suggest that dialysed RNA undergoes a unimolecular conformational transition upon pre-incubation in Mg2+-containing buffers and that this transition leads to renaturation of the binding site for protein S4.Similar results were obtained for several other proteins of the 30 S subunit. In particular, S7, S16/S17 and S20 all failed to interact efficiently with dialysed 16 S RNA at 0 °C. These proteins bound normally to the RNA, however, after it had been incubated at 40 °C in the presence of Mg2+ ions. By contrast, prior dialysis of the 16 S RNA did not affect its ability to associate with S8 and S15 at 0 °C. These two proteins interacted equally well with dialysed and pre-incubated 16 S RNA, indicating that their binding sites are not susceptible to the reversible alterations in conformation which influence the attachment of the other RNA-binding proteins to the nucleic acid molecule. The effects of dialysis and pre-incubation on the interaction of 16 S RNA with an unfractionated mixture of 30 S subunit proteins were also investigated. The dialysed RNA bound only S6, S8, S15 and S18 at 0 °C whereas, after heating at. high Mg2+ concentrations, the RNA associated with S4, S7, S9, S13, S16/S17, S19 and S20 as well. These results leave little doubt that the protein-binding capacities of the 16 S RNA are intimately related to its three-dimensional configuration, although individual binding sites appear to differ significantly in their stability to small changes in structure.  相似文献   

7.
Human growth hormone binding sites from female rabbit kidney microsomes were solubilized by treatment with the nonionic detergent Triton X-100. The binding of 125I-labelled human growth hormone to the solubilized sites retains many of the properties observed in the particulate fraction, such as saturability, reversibility, high affinity and structural specificity. The association and the dissociation process are time- and temperature-dependent. The association rate constant, k1, is 1.6·107 mol?1·l·min?1 at 25°C, and the dissociation rate constant, k?1, is 2.8·10?4 min?1 at 25°C. Solubilization causes an increase in affinity as well as in binding capacity. Scatchard plots from saturation curves suggest the presence of a single class of binding site with a dissociation equilibrium constant, Kd, of 1.3·10?11 M and a binding capacity of 133 fmol/mg of protein. Similar results were obtained from competition experiments. Specificity studies revealed the lactogenic characteristics of the solubilized sites. The Stokes radii of the free binding sites and of the 125I-labelled human growth hormone-binding site complex, determined on a Sepharose CL-6B column, are 57 and 53 Å, respectively.  相似文献   

8.
Abstract

Soluble receptors that bind human growth hormone have been prepared by incubation of liver membranes from pregnant female rabbits in 1 mM Tris buffer (pH 7.5 or 9.0) at 4°C. Up to 29% of the growth hormone binding sites could be solubilized within 48 hours. The kinetics of binding of human growth hormone to the soluble receptor, the hormonal specificity and the binding parameters calculated by Scatchard analysis (Ka 2.2 × 109 M-1, capacity 409 fmole/mg) were essentially unchanged compared with those for the parent membrane-associated (particulate) receptor. Gel filtration on Ultrogel AcA22 indicated that the major binding peak eluted at a molecular weight of 300,000 daltons. Specificity studies showed that the soluble binding sites had a moderately high affinity for ovine prolactin (Ka ~1 × 108 M-1), but negligible affinity for insulin. Although aqueous extraction gives a lower yield of binding sites for human growth hormone than detergent extraction, it nevertheless avoids some of the problems associated with use of detergents and should facilitate the subsequent purification of the receptor in a relatively unaltered state. It may also have applicability for solubilization of other hormone receptor systems.  相似文献   

9.
Cytoplasmic receptors for 1α, 25-dihydroxyvitamin D3 from human parathyroid adenoma tissue and rachitic chick parathyroid glands have been characterized with regard to a number of physical, chemical, and ligand binding properties. Both receptors are 3.6–3.7 S proteins with molecular weights of approximately 75,000 and Stoke's molecular radii of 36 Å. It was found that the receptors possess a cysteine residue in or near the 1α, 25-dihydroxyvitamin D3 binding site which is critical for ligand binding activity. The receptors both have equilibrium dissociation constants for 1α, 25-dihydroxyvitamin D3 in the range of 2 to 5 × 10?10m at 4 °C and second-order association rate constants for their seco-steroid ligand of 1 × 107, m?1 min?1 (0 °C). The dissociation rate constants were found to be 5.3 × 10?4 min?1 (4 °C) for the human receptor and 1.3 × 10?5 min?1 (4 °C) for the chick receptor. The great deal of similarity which exists between the cytoplasmic 1α, 25-dihydroxyvitamin D3 receptors from avian and mammalian parathyroid glands suggests a homologous function for these molecules in the two tissues.  相似文献   

10.
F G Walz  B Terenna  D Rolince 《Biopolymers》1975,14(4):825-837
Spectrophotometric binding studies were undertaken on the interaction of neutral red with native and heat-denatured, sonicated, calf thymus DNA in a 0.2M ionic strength buffer containing Tris–sodium acetate–potassium chloride at 25°C. The pKA of neutral red was found to be 6.81. At pH 5 the binding of protonated neutral red was complicated even at low concentration ratios of dye to DNA. In the pH range 7.5–8.5 the tight binding process could be studied and it was found that both protonated and free base species of neutral red significantly bind with DNA having association constants (in terms of polynucleotide phosphate) of 5.99 × 103 M?1 and 0.136 × 103 M?1, respectively, for native DNA and 7.48 × 103 M?1 and 0.938 × 103 M?1, respectively, for denatured DNA. The pKA value of the neutral red–DNA complexes were 8.46 for native DNA and 7.72 for denatured DNA. These results are discussed in terms of possible binding mechanisms.  相似文献   

11.
Abstract

The effects of Ca2+ ions on 3H-RO 5–4864 binding to the peripheral benzodiazepine receptor were examined. Preincubation of rat kidney membranes with Ca2+ at 37°C produced a dose-dependent inhibition of 3H-RO 5–4864 binding. No inhibition was observed in membranes preincubated at 0°C.

The effect of Ca2+ was competitive in nature and was fully reversed by the addition of EGTA. At 1 mM, the maximal effect was achieved with CaCl2, whereas CoCl2 and CdCl2 had lesser effects. No other divalent cation salts examined decreased 3H-RO 5–4864 binding to rat kidney membranes. Collectively, these data demonstrate that the affinity of 3H-RO 5–4864 binding to rat kidney membranes is regulated by Ca2+ and suggest the presence of cation recognition binding sites coupled to the peripheral benzodiazepine receptor.  相似文献   

12.
The kinetics of binding of 1-naphthylacetic acid to particulate fractions from tobacco-pith callus were studied. This binding site does not bind auxin at 0° C. Binding experiments performed at 25° C demonstrated an apparent K a of approx. 6.5·106 M-1. A filtration method was developed in order to study non-equilibrium kinetics of this binding. Dissociation of the complex of auxin and binding site indicates the presence of at least two binding components with dissociation rate constants (k off) of 6.1·10-3 min-1 and 6.0·10-2 min-1. This binding behaviour was not independent, indicating that the binding of auxin to the particulate fractions was more complex than binding of one hormone molecule to one binding site. This complexity was further confirmed by experiments in which the initial velocity of complex formation was measured. A model was worked out into which our data fit without contradictions. It involves the binding of four hormone molecules to one receptor molecule.  相似文献   

13.
The interaction between enzymatically radioiodinated human follitropin and the follitropin receptors in testis homogenate was investigated in immature and adult rats. The 125I-labeled human follitropin exhibited high binding activity, with specific binding of up to 17% in the presence of an excess of testis homogenate.Approx. 50% of the bound hormone could be eluted at pH 5, and the receptor purified tracer exhibited a 3.6-fold increase in binding activity when compared with the original tracer preparation. Quantitative analysis of equilibrium binding data was performed with corrections for the measured specific activity and maximum binding activity of the tracer hormone. The equilibrium association constants (Ka) determined at 24°C were not significantly different in immature and adult rat testis, and the mean value for Ka was 3.9 · 109 M?1. At 37°C, the Ka value obtained using immature rat testis was 1.3 · 1010 M?1. The association of 125I-labeled human follitropin with immature rat testis homogenate was time and temperature dependent. In the presence of an excess of unlabeled hormone, 30–60% of the preformed hormone · receptor complex was dissociated after 24 h incubation. A specific and sensitive radioligand-receptor assay for follitropin was developed using immature rat testis homogenate. The minimum detectable dose of purified human follitropin was 0.6 ng, and human urinary and pituitary follitropin, ovine follitropin and pregnant mare serum gonadotropin reacted in the assay with equivalent slopes. The potencies of highly purified pregnant mare serum gonadotropin and highly purified human follitropin were similar in the radioligand-receptor assay, consistent with the follitropin bioactivity of the equine gonadotropin.  相似文献   

14.
P1 type nuclease, which hydrolyzes RNA and heat-denatured DNA completely into 5’-mononucleotides and also shows 3’-nucleotidase activity, was widely distributed among various species belonging to the genus Penicillium such as P. expansum, P. notatum, P. steckii and P. meleagrinum. P1 type nucleases isolated from these strains were produced in a form of complex with malonogalactan when molds were grown on wheat bran. These enzymes showed similar characters in heat-stability (stable at 60°C), temperature optimum (60 to 70°C for RNA and heat denatured DNA, and 70°C for 3’-AMP) and sensitivity to EDTA. The enzymes from P. steckii and P. expansum were immunologically co-related to nuclease P1.

In addition, many strains of Penicillium produced base-nonspecific RNases forming 3’-mononucleotides via 2’: 3 ’-cyclic nucleotides. These RNases showed similarity in heat-lability (completely inactivated at 60°C), temperature optimum (45 to 50°C), sensitivity to Zn2+ and Cu2+, and relative hydrolysis rate toward 2’: 3’-cyclic nucleotides (A?C>U?G).  相似文献   

15.
Chick oviduct cytosol [3H]progesterone-receptor complex treated with 30 mm Ca2+ at 0 °C demonstrated a twofold greater binding to isolated chick oviduct nuclei or DNA-cellulose than such complexes activated thermally (25 °C). Divalent ions such as Mg2+ and Mn2+ were unable to mimic the effect of Ca2+ under identical conditions. The capacity of the Ca2+-treated progesterone-receptor complex to bind to nuclei or DNA-cellulose reached a peak within 45 min of Ca2+ treatment of the complex at 0 °C. This binding gradually declined as a function of incubation time and after 24 h at 0 °C no significant binding was observed. The Ca2+- and heat-treated chick oviduct [3H]progesterone-receptor complex was also characterized by DEAE-cellulose and agarose gel nitration chromatography. While heat-activated receptor could be resolved into A and B subunits on DEAE-cellulose, the receptor exposed to Ca2+ for 45 min at low temperature yielded the “A” subunit and a broad peak with poor affinity for the anion exchanger. The peak corresponding to “B” subunit was not discernible. The broad peak which eluted before the A peak was subsequently resolved by agarose gel filtration into receptor forms IV and V as described previously by Sherman et al. (M. Sherman, S. Atienza, J. Shansky, and L. Hoffman, 1974, J. Biol. Chem., 249, 5351–5363; M. Sherman, L. Pickering, F. Rollwagen and L. Miller, 1978, Fed. Proc., 37, 167–173). Again DEAE-cellulose chromatography of the progesterone-receptor complex treated as long as 24 h at 0 °C with Ca2+ revealed a poorly bound peak which on agarose gel filtration corresponded exclusively to form V. A correlation was apparent between an increase in form V and a gradual decrease in the binding capacity of the Ca2+-treated steroid-receptor complex to nuclei, DNA-cellulose, or DEAE-cellulose filters.Based on these findings, I postulate that Ca2+ has a functional role in the mechanism of progesterone action in chick oviduct. Firstly, it enhances a low temperature, time dependent binding of the progesterone-receptor complex to chick oviduct nuclear components, and subsequently promotes, by possible activation of endogenous protease(s) the cleavage of the receptor subunits.  相似文献   

16.
The rates of formation and dissociation of concanavalin A with some 4-methylumbelliferyl and p-nitrophenyl derivatives of α- and β-D-mannopyranosides and glucopyranosides were measured by fluorescence and spectral stopped-flow methods. All process examined were uniphasic. The second-order formation rate constants varied only from 6.8 · 104 to 12.8 · 104 M?. s?1, whereas the first-order dissociation rate constants ranged from 4.1. to 220 s?1, all at ph 5.0, I = 0.3 M, and 25°C. Dissociation rates thus controlled the value of binding constant. The effect of temperature on these reactions was examined, from which enthalpies and entropies of activation and of reaction could be calculated. The effects of pH at 25°C on the reaction rates of 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside with concanavalin A were examined. The value of the binding constant Kap (derived from the kinetics) at any pH could be related to the intrinsic binding constant K by the expression Kap = KaK(Ka + [H+])?1. The values of Ka, the ionization constant of the protein segment responsive to sugar binding, were 3 · 10?4 M and 1 · 10?4 M for 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside, respectively. The binding constant of p-nitrophenyl α-D-mannopyranoside is surprisingly much less sensitive to a pH change from 5.0 to 2.7. Ionic strength had little effect on the binding characteristics of 4-methylumbelliferyl α-D-mannopyranoside to concanavalin A at pH 5.2 and 25°C.  相似文献   

17.
The ligand binding and G-protein coupling of the bovine hippocampal 5-HT1A receptor as a function of temperature was monitored. There is an almost complete and irreversible loss in agonist binding at 50°C. However, the antagonist binding is reduced only by 50%, and this could be reversed if the temperature is lowered to 25°C. Interestingly, the agonist binding of the 5-HT1A receptor in membranes exposed to 50°C is inhibited to a much lesser extent by GTP-γ-S, a non-hydrolysable analogue of GTP, indicating uncoupling of the 5-HT1A receptor to G-proteins at 50°C. We propose that high temperature selectively and irreversibly inactivates G-proteins thereby affecting G-protein-receptor interaction and agonist binding of the 5-HT1A receptor.  相似文献   

18.
1,25-Dihydroxyvitamin D3 receptors in rat kidney cytosol   总被引:5,自引:0,他引:5  
Rat kidney cytosol contains a 3.3 S high affinity binding component for 1,25-dihydroxyvitamin D3 as detected by DNA-cellulose chromatography and subsequent sucrose gradient analysis. The semipurified aporeceptor demonstrates specificity for 1,25-dihydroxyvitamin D3 and an apparent dissociation constant for this sterol-hormone of 3.4 × 10?10M at 25°C. The physicochemical properties of this binding component are in agreement with those observed for the chick intestinal 1,25-dihydroxyvitamin D3 receptor, suggesting that this component may function as a specific receptor for the hormone in the kidney.  相似文献   

19.
Specific binding proteins for 1,25-dihydroxyvitamin D3 were identified in bovine mammary tissue obtained from lactating and non-lactating mammary glands by sucrose density gradient centrifugation. The macromolecules had characteristic sedimentation coefficients of 3.5-3.7 S. The interaction of l,25-dihydroxy[3H]vitamin D3 with the macromolecule of the mammary gland cytosol occurred at low concentrations, was saturable, and was a high affinity interaction (Kd = 4.2 × 10?10M at 25 °C). Binding was reversed by excess unlabeled 1,25-dihydroxyvitamin D3, was destroyed by heat and/or incubation with trypsin. It is thus inferred that this macromolecule is protein as it is not destroyed by ribonuclease or deoxyribonuclease. 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, and vitamin D3 did not effectively compete with 1,25-dihydroxyvitamin D3 for binding to cytosol of mammary tissue at near physiological concentrations of these analogs, thus demonstrating the specificity of the binding protein for 1,25-dihydroxyvitamin D3. In vitro subcellular distribution of 1,25-dihydroxy[3H]vitamin D3 demonstrated a time- and temperature-dependent movement of the hormone from the cytoplasm to the nucleus. By 90 min at 25 °C 72% of the 1,25-dihydroxy[3H]vitamin D3 was associated with the nucleus. In addition a 5–6 S macromolecule which binds 25-hydroxy[3H]vitamin D3 was demonstrated in mammary tissue. Finally, it is possible that the receptor-hormone complex present in mammary tissue may function in a manner analogous to intestinal tissue, resulting in the control of calcium transport by 1,25-dihydroxyvitamin D3 in this tissue.  相似文献   

20.
The binding of cis(c)- and trans(t)-Pt(NH3)2Cl2 to DNA at platinum/DNA-nucleotide ratios (Ri) of 0.1 or less has been studied by means of radioactive 195mPt-labeled compounds. Kinetic data are consistent with the following scheme:
At 25°C and pH 5–6 in 5 mM NaClO4, the values for the rate constants in the above scheme for the c-isomer are k2 = 2.2 × 10?5 sec?1, k7 = 0.32 (sec M)?1, and k8 = 143 (sec M)?1; for the t-isomer the values are k2 < 0.5 × 10?5 sec?1 and k7 = 0.95 (sec M)?1. Platinum-DNA adducts do not undergo detectable exchange after 3 days at 37°C, indicating the absence of a dynamic equillibrium. For both isomers the rate of binding is the same for single- and double-stranded DNA. The conclusions derived from Ag+ and H+ titration studies are consistent with binding at guanine N(7) for Ri < 0.1. The reaction rate is competitively inhibited by various salts and buffers and is suppressed by raising the pH (50% inhibition of initial rates at pH 7.3). At 37°C and pH 7 in 0.15 M NaCl, 6–8% of both the c- and t-isomers bind to DNA in 24 h, suggesting that both compounds should bind to DNA under biological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号