首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cells ofNostoc PCC 73102, a free-living cyanobacterium originally isolated from the cycadMacrozamia, were cultured under different conditions and examined for the presence ofin vitro active ornithine carbamoyl transferase (OCT). Cells grown in darkness showed a significant increase ofin vitro OCT activity compared with the activity when grown in light. Addition of external arginine in the growth medium increasedin vitro OCT activity both in light and in darkness. Moreover, the highestin vitro OCT activity was observed in cells grown in darkness and with the addition of external arginine, a sevenfold increase compared with cells grown in light. Native-PAGE in combination with on gel OCT activity stain demonstrated that external arginine induced the presence of twoin vitro active OCT. In addition to the previously described 80 kDa OCT [Physiol Plant 84:275–282, 1992], a secondin vitro active enzyme with a molecular weight of approximately 118 kDa appeared. Western immunoblots, with native cell-free extracts and antibodies directed either against native or denatured OCT purified fromPisum sativum, confirmed that both enzymes were OCT. Moreover, with a denatured cell-free extract only one polypeptide, with a molecular weight of about 40 kDa, was recognized, indicating that the secondin vitro active OCT might be a trimer with three identical subunits.  相似文献   

2.
Cells of free-living nitrogen-fixing Nostoc PCC 73102, a filamentous heterocystous cyanobacterium originally isolated from coralloid roots of the cycad Macrozamia. were examined for the presence of ornithine carbamoyl transferase (OCT) by native-PAGE/in situ activity stain, and SDS-PAGE/Western immunoblots. Transmission electron microscopy and immunocytological labeling were used to study the cellular and subcellular distribution of OCT in the Nostoc cells. Moreover, the effects of photoautotrophic and dark heterotrophic growth metabolism on growth, nitrogenase activity and in vivo citrulline synthesis were investigated. PAGE in combination with in situ activity staining demonstrated an in vitro active OCT with a molecular weight of approximately 80 kDa. SDS-PAGE/Western immunoblots revealed that a polypeptide with a molecular weight of approximately 38 kDa was immunologically related to OCT purified from pea (Pisum sativum L. cv. Alaska). Immunolocalization demonstrated that the OCT protein was located both in vegetative cells and heterocysts. Using the particle analysis of an image processor, the labeling associated with the photosynthetic vegetative cells was calculated to be 75.6 (± 5.5) gold particles μm?2 compared with 62.0 (± 7.5) in the nitrogen-fixing heterocysts. Glucose and fructose stimulated both cyanobacterial growth and nitrogenase activity in light and darkness. Addition of exogenous ornithine decreased nitrogenase activity. In light grown cells, additions of glucose and fructose in combination with ornithine not only stimulated growth and nitrogenase activity but also in vivo citrulline synthesis, measured as 14CO2-fixation into [14C]-citrulline. In darkness no stimulation was observed on in vivo citrulline synthesis. The substantial stimulation of nitrogenase activity by additions of external glucose and fructose, both in the light and in darkness, was not followed by a simultaneous stimulation of in vivo citrulline synthesis.  相似文献   

3.
Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.  相似文献   

4.
In Aeromonas formicans two inducible catabolic pathways of L-arginine have been characterized. The arginine decarboxylase is induced by arginine which also induces the three enzymes of the arginine deiminase pathway but only in stress conditions such as a shift from aerobic growth conditions to very low oxygen tension. Addition of glucose to medium containing arginine leads to repression of the enzymes involved in the arginine deiminase pathway while exogenous cAMP prevents that repression of enzyme synthesis by glucose. This suggests that the induction of arginine deiminase pathway is regulated by carbon catabolite repression and the energetic state of the cell.  相似文献   

5.
Enzyme repression in the arginine pathway ofSaccharomyces cerevisiae was demonstrated by comparison of specific enzyme activities in yeast grown with and without arginine in various mineral salts media. Of the enzymes tested only ornithine transcarbamoylase was found to be repressed by exogenous arginine. Acetylornithine-glutamate transacetylase and argininosuccinate lyase were not affected. No relationship between specific enzyme activities and intracellular arginine concentration was observed.During the adaptation of yeast grown in a medium supplemented with amino acids to a mineral salts medium, the enzymes ornithine transcarbamoylase and argininosuccinate lyase were not derepressed beyond their specific activities normally present in yeast grown in mineral salts media. Neither were the arginine-degrading enzymes arginase and ornithine transaminase broken down during this adaptation.Thanks are due to Professor E. G. Mulder and to Professor H. Veldkamp for stimulatory discussions; to the Heineken's Brouwerij, Rotterdam, and to the Landbouwhogeschoolfonds for research grants.  相似文献   

6.
The enzymes in the arginine breakdown pathway (arginase, ornithine-delta-transaminase, and Delta'-pyrroline-5-carboxylate dehydrogenase) were found to be present in Bacillus licheniformis cells during exponential growth on glutamate. These enzymes could be coincidentally induced by arginine or ornithine to a very high level and their synthesis could be repressed by the addition of glucose, clearly demonstrating catabolite repression control of the arginine degradative pathway. The strongest catabolite repression control of arginase occurred when cells were grown on glucose and this control decreased when cells were grown on glycerol, acetate, pyruvate, or glutamate. The proline catabolite pathway was present in B. licheniformis during exponential growth on glutamate. The proline oxidation and the Delta'-pyrroline-5-carboxylate dehydrogenase in this breakdown pathway were induced by l-proline to a high level. The Delta'-pyrroline-5-carboxylate dehydrogenase was found to be under catabolite repression control. Arginase could be induced by proline and arginine addition induced proline oxidation, suggesting a common in vivo inducer for these convergent pathways.  相似文献   

7.
Single amino acid Arg (arginine) deprivation is currently considered as a therapeutic approach to treat certain types of tumours; the molecular mechanisms that underlie tumour cell sensitivity or resistance to Arg restriction are still little understood. Here, we address the question of whether endogenous levels of key Arg metabolic enzymes [catabolic: arginases, ARG1 (arginase type 1) and ARG2 (arginase type 2), and anabolic: OTC (ornithine transcarbamylase) and ASS (argininosuccinate synthetase)] affect cellular responses to arginine deprivation in vitro. Human epithelial cancer cells of different organs of origin exhibiting variable sensitivity to Arg deprivation provided the experimental models. Neither the basal expression status of the analysed enzymes, nor their changes upon arginine withdrawal correlated with cancer cell sensitivity to arginine deprivation. However, the ability to utilize exogenous Arg precursors (ornithine and citrulline) for growth in Arg‐deficient medium strongly correlated with expression of the corresponding enzymes, OTC and ASS. We also observed that OTC expression was below the level of detection in all the types of tumour cells analysed, suggesting that in vitro, at least for them, Arg is an essential amino acid.  相似文献   

8.
In Pseudomonas aeruginosa arginine can be degraded by the arginine "dihydrolase" system, consisting of arginine deiminase, catabolic ornithine carbamoyltransferase, and carbamate kinase. Mutants of P. aeruginosa strain PAO affected in the structural gene (arcB) of the catabolic ornithine carbamoyltransferase were isolated. Firt, and argF mutation (i.e., a block in the anabolic ornithine carbamoyltransferase) was suppressed specifically by a mutationally altered catabolic ornithine carbamoyltransferase capable of functioning in the anabolic direction. The suppressor locus arcB (Su) was mapped by transduction between hisII and argA. Second, mutants having lost suppressor activity were obtained. The Su- mutations were very closely linked to arcB (Su) and caused strongly reduced ornithine carbamoyltransferase activities in vitro. Under aerobic conditions, a mutant (PA0630) which had less than 1% of the wild-type catabolic ornithine carbamoyltransferase activity grew on arginine as the only carbon and nitrogen source, at the wild-type growth rate. When oxygen was limiting, strain PA0630 grown on arginine excreted citrulline in the stationary growth phase. These observations suggest that during aerobic growth arginine is not degraded exclusively via the dihydrolase pathway.  相似文献   

9.
The formation of the arginine dihydrolase pathway enzymes inLactobacillus buchneri NCDO110, a heterofermentative organism, was investigated. The specific activities of arginine deiminase, ornithine transcarbamylase, and carbamate kinase were higher in galactose-grown cells than in glucose- or sucrose-grown cells in the early stationary phase of growth. The addition of arginine to growing cells increased the specific activity of these three enzymes with all growth sugars. The specific activities of the enzymes decreased during the stationary phase of growth when the sugar-grown cells was galactose. When glucose was virtually exhausted from the medium, the activities of the three enzymes were not altered. This enzymic system was not repressed by glucose, and these results are different from those obtained withL. leichmanni, homofermentative organism.Dedicated to Dr. Luis F. Leloir on the occasion of his 80th birthday, 6 September 1986.Member of the Scientific Researcher's Career of theConsejo Nacional de Investigaciones Cientificas Ténicas (CONICET) Argentina.  相似文献   

10.
The wine lactic acid bacteria Leuconostoc oenos OENO and Lactobacillus buchneri CUC-3 catabolize L-arginine to ornithine and ammonia as major end-products, with 1 mole of arginine converted into 2 moles of ammonia and 1 mole of ornithine. Some citrulline was also excreted into the medium. The excreted citrulline was reassimilated and catabolized by the lactobacillus strain, though not by the leuconostoc. Urea was not detected during arginine degradation. The activities of all three enzymes of the arginine deiminase pathway (arginine deiminase, ornithine transcarbamylase and carbamate kinase) increased significantly over time in the presence of arginine. On the other hand, arginase and urease activities were undetectable in cell extracts of cultures grown in the presence of arginine. The results show that the arginine deiminase pathway, and not the arginase-urease pathway, is the route for arginine degradation in wine lactic acid bacteria.  相似文献   

11.
Pseudomonas aeruginosa PAO was able to grow in the absence of exogenous terminal electron acceptors, provided that the medium contained 30 to 40 mM L-arginine and 0.4% yeast extract. Under strictly anaerobic conditions (O2 at less than 1 ppm), growth could be measured as an increase in protein and proceeded in a non-exponential way; arginine was largely converted to ornithine but not entirely consumed at the end of growth. In the GasPak anaerobic jar (Becton Dickinson and Co.), the wild-type strain PAO1 grew on arginine-yeast extract medium in 3 to 5 days; mutants could be isolated that were unable to grow under these conditions. All mutants (except one) were defective in at least one of the three enzymes of the arginine deiminase pathway (arcA, arcB, and arcC mutants) or in a novel function that might be involved in anaerobic arginine uptake (arcD mutants). The mutations arcA (arginine deiminase), arcB (catabolic ornithine carbamoyltransferase), arcC (carbamate kinase), and arcD were highly cotransducible and mapped in the 17-min chromosome region. Some mutations in the arc cluster led to low, noninducible levels of all three arginine deiminase pathway enzymes and thus may affect control elements required for induction of the postulated arc operon. Two fluorescent pseudomonads (P. putida and P. fluorescens) and P. mendocina, as well as one PAO mutant, possessed an inducible arginine deiminase pathway and yet were unable to grow fermentatively on arginine. The ability to use arginine-derived ATP for growth may provide P. aeruginosa with a selective advantage when oxygen and nitrate are scarce.  相似文献   

12.
Summary The ornithine transaminase (EC.2.6.1.13) of Saccharomyces cerevisiae is induced by arginine, ornithine, and their analogs. Genetic regulatory elements which are involved in this induction process have been defined due to the isolation of specific mutants. Two classes of OTAse operator mutants have previously been described; three unlinked genes are presumed to code for a specific repressor, CARGR of both of the arginine catabolic enzymes, arginase, and ornithine transaminase. The level of transaminase of cells grown on ammonia plus arginine is much lower than it is when arginine is the sole nitrogen source. Ammonia thus seems to limit the amount of enzyme synthesized when arginine is present in the growth medium. Nevertheless, all attempts to disclose a nitrogen catabolite repression process in OTAse synthesis have failed; neither the action of mutations that release this regulation on arginase and other catabolic enzymes, nor the use of derepressing growth conditions, affect OTAse synthesis. A decrease of the cells' arginine pool when amonia or aminoacids (serine, glutamate) are added to arginine as a nitrogen nutrient results in a progressive reduction of transaminase synthesis. This suggests that arginine is the only physiological effector in those conditions: ammonia or some aminoacids would reduce the enzyme synthesis because of an inducer exclusion. The first stage of OTAse induction would then be operated by the CARGR repressor, and an additional regulatory element might take part in the full scale process. Preliminary data favoring the involvment of such an element are presented.  相似文献   

13.
Arginine metabolism in lactic streptococci.   总被引:35,自引:14,他引:21       下载免费PDF全文
Streptococcus lactis metabolizes arginine via the arginine deiminase pathway producing ornithine, ammonia, carbon dioxide, and ATP. In the four strains of S. lactis examined, the specific activities of arginine deiminase and ornithine transcarbamylase were 5- to 10-fold higher in galactose-grown cells compared with glucose- or lactose-grown cells. The addition of arginine increased the specific activities of these two enzymes with all growth sugars. The specific activity of the third enzyme involved in arginine metabolism (carbamate kinase) was not altered by the composition of the growth medium. In continuous cultures arginine deiminase was not induced, and arginine was not metabolized, until glucose limitation occurred. In batch cultures the metabolism of glucose and arginine was sequential, whereas galactose and arginine were metabolized concurrently, and the energy derived from arginine metabolism was efficiently coupled to growth. No arginine deiminase activity was detected in the nine Streptococcus cremoris strains examined, thus accounting for their inability to metabolize arginine. All nine strains of S. cremoris had specific activities of carbamate kinase similar to those found in S. lactis, but only five S. cremoris strains had ornithine transcarbamylase activity.  相似文献   

14.
The arginine dihydrolase pathway is present in Giardia intestinalis   总被引:1,自引:0,他引:1  
Growth of Giardia intestinalis in Diamond's TYI-S-33 medium is characterized by a rapid depletion of the arginine in the medium, and concurrent production of ornithine and ammonia. [Guanidino-14C] arginine was converted to 14CO2 by extracts of G. intestinalis suggesting the presence of the arginine dihydrolase pathway. This was confirmed by the detection of arginine deiminase, catabolic ornithine transcarbamylase, carbamate kinase and ornithine decarboxylase in giardial extracts. The findings demonstrate for the first time the existence of the arginine dihydrolase pathway in Giardia, and suggest that arginine metabolism via this pathway plays a significant role in energy metabolism by providing a site for anaerobic substrate level phosphorylation.  相似文献   

15.
The levels of enzymes and metabolites of arginine metabolism were determined in exponential cultures of Neurospora crassa grown on various carbon sources. The carbon sources decreased in effectiveness (as determined by generation times) in the following order: sucrose, acetate, glycerol, and ethanol. The basal and induced levels of the catabolic enzymes, arginase (EC 3.5.3.1) and ornithine transaminase (EC 2.6.1.13), were lower in mycelia grown on poor carbon sources. Arginase was more sensitive to variations in carbon source than was ornithine transaminase. Induction of both enzymes was sensitive to nitrogen metabolite control, but this sensitivity was reduced in mycelia grown on glycerol or ethanol. The pools of arginine and ornithine were reduced in mycelia grown in unsupplemented medium containing poor carbon sources, but the biosynthetic enzyme ornithine transcarbamylase (EC 2.1.3.3) was not derepressed. The arginine pools were similar, regardless of carbon source, in mycelia grown in arginine-supplemented medium. The ornithine pool was reduced by growth on poor carbon sources. The rate of arginine degradation was proportional to the level of arginase in both sucrose- and glycerol-grown mycelia. The distribution of arginine between cytosol and vesicles was only slightly altered by growth on glycerol instead of sucrose. The slightly smaller cytosolic arginine concentration did not appear to be sufficient to account for the alterations in basal and induced enzyme levels. The results suggest a possible carbon metabolite effect on the expression or turnover of a variety of genes for enzymes of arginine metabolism in Neurospora.  相似文献   

16.
Lactobacillus leichmannii ATCC 4797 metabolizes arginine via the arginine dihydrolase pathway producing ornithine, ammonia, carbon dioxide, and ATP. The specific activities of arginine deiminase and ornithine transcarbamylase were two-or threefold lower (stationary growth phase) in galactose-grown cells. The addition of arginine increased the specific activities of these two enzymes with all growth sugars. When glucose was virtually exhausted from the medium, maximum activities of both enzymes were achieved. The formation of two first enzymes of the arginine dihydrolase pathway inL. leichmannii ATCC 4797 seems to be under the control of two processes: induction by arginine and repression of the induced synthesis by glucose.Dedicated to Dr. Luis F. Leloir on the occasion of his 80th birthday, 6 September 1986.  相似文献   

17.
The three enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa strain PAO were induced strongly (50- to 100-fold) by a shift from aerobic growth conditions to very low oxygen tension. Arginine in the culture medium was not essential for induction, but increased the maximum enzyme levels twofold. The induction of the three enzymes arginine deiminase (EC 3.5.3.6), catabolic ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3) appeared to be coordinate. Catabolic ornithine carbamoyltransferase was studied in most detail. Nitrate and nitrite, which can replace oxygen as terminal electron acceptors in P. aeruginosa, partially prevented enzyme induction by low oxygen tension in the wild-type strain, but not in nar (nitrate reductase-negative) mutants. Glucose was found to exert catabolite repression of the deiminase pathway. Generally, conditions of stress, such as depletion of the carbon and energy source or the phosphate source, resulted in induced synthesis of catabolic ornithine carbamoyltransferase. The induction of the deiminase pathway is thought to mobilize intra- and extracellular reserves of arginine, which is used as a source of adenosine 5'-triphosphate in the absence of respiration.  相似文献   

18.
In the absence of oxygen and nitrate, Pseudomonas aeruginosa metabolizes arginine via the arginine deiminase pathway, which allows slow growth on rich media. The conversion of arginine to ornithine, CO2, and NH3 is coupled to the production of ATP from ADP. The enzymes of the arginine deiminase pathway are organized in the arcDABC operon. The arcD gene encodes a hydrophobic polytopic membrane protein. Translocation of arginine and ornithine in membrane vesicles derived from an Escherichia coli strain harboring a recombinant plasmid carrying the arcD gene was studied. Arginine and ornithine uptake was coupled to the proton motive force with a bias toward the transmembrane electrical potential. Accumulated ornithine was readily exchangeable for external arginine or lysine. The exchange was several orders of magnitude faster than proton motive force-driven transport. The ArcD protein was reconstituted in proteoliposomes after detergent solubilization of membrane vesicles. These proteoliposomes mediate a stoichiometric exchange between arginine and ornithine. It is concluded that the ArcD protein is a transport system that catalyzes an electroneutral exchange between arginine and ornithine to allow high-efficiency energy conversion in the arginine deiminase pathway.  相似文献   

19.
20.
Ornithine decarboxylase (ODC) catalyzes the first step in the polyamine biosynthetic pathway, a highly regulated pathway in which activity increases during rapid growth. Other enzymes also metabolize ornithine, and in hepatomas, rate of growth correlates with decreased activity of these other enzymes, which thus channels more ornithine to polyamine biosynthesis. Ornithine is produced from arginase cleavage of arginine, which also serves as the precursor for nitric oxide production. To study whether short-term coordination of ornithine and arginine metabolism exists in rat colon, ODC, ornithine aminotransferase (OAT), arginase, ornithine, arginine, and polyamine levels were measured after two stimuli (refeeding and/or deoxycholate exposure) known to synergistically induce ODC activity. Increased ODC activity was accompanied by increased putrescine levels, whereas OAT and arginase activity were reduced by either treatment, accompanied by an increase in both arginine and ornithine levels. These results indicate a rapid reciprocal change in ODC, OAT, and arginase activity in response to refeeding or deoxycholate. The accompanying increases in ornithine and arginine concentration are likely to contribute to increased flux through the polyamine and nitric oxide biosynthetic pathways in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号