首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The trafficking of effector cells to sites of infection is crucial for antiviral responses. However, the mechanisms of recruitment of the interferon-γ-producing and cytotoxic CD56(+) T cells are poorly understood. Human mast cells are sentinel cells found in the skin and airway and produce selected proinflammatory mediators in response to multiple pathogen-associated signals. The role of human mast cell-derived chemokines in T-cell recruitment to virus infection was examined. Supernatants from primary human cord blood-derived mast cells (CBMCs) infected with mammalian reovirus were examined for chemokine production and utilized in chemotaxis assays. Virus-infected CBMCs produced several chemokines, including CCL3, CCL4, and CCL5. Supernatants from reovirus-infected CBMCs selectively induced the chemotaxis of CD8(+) T cells (10±1%) and CD3(+)CD56(+) T cells (19±5%). CD56(+) T-cell migration was inhibited by pertussis toxin (65±9%) and met-RANTES (56±7%), a CCR1/CCR5 antagonist. CD56(+) T cells expressed CCR5, but little CCR1. The depletion of CCL3, CCL4, and CCL5 from reovirus-infected CBMC supernatants significantly (41±10%) inhibited CD56(+) T-cell chemotaxis. This study demonstrates a novel role for mast cells and CCR5 in CD56(+) T-cell trafficking and suggests that human mast cells enhance immunity to viruses through the selective recruitment of cytotoxic effector cells to virus infection sites. These findings could be exploited to enhance local T-cell responses in chronic viral infection and malignancies at mast cell-rich sites.  相似文献   

2.
The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1.  相似文献   

3.

Background

The aim of this study was to provide more insight into the question as to why blockade of CCR1, CCR2, and CCR5 may have failed in clinical trials in rheumatoid arthritis (RA) patients, using an in vitro monocyte migration system model.

Methodology/Principal Findings

Monocytes from healthy donors (HD; n = 8) or from RA patients (for CCR2 and CCR5 antibody n = 8; for CCR1 blockade n = 13) were isolated from peripheral blood and pre-incubated with different concentrations of either anti-CCR1, anti-CCR2, or anti-CCR5 blocking antibodies (or medium or isotype controls). In addition, a small molecule CCR1 antagonist (BX471) was tested. Chemotaxis was induced by CCL2/MCP-1 (CCR2 ligand), CCL5/RANTES (CCR1 and CCR5 ligand), or by a mix of 5 RA synovial fluids (SFs), and cellular responses compared to chemotaxis in the presence of medium alone. Anti-CCR2 antibody treatment blocked CCL2/MCP-1-induced chemotaxis of both HD and RA monocytes compared to isotype control. Similarly, anti-CCR5 antibody treatment blocked CCL5/RANTES-induced chemotaxis of RA monocytes. While neither CCR2 nor CCR5 blocking antibodies were able to inhibit SF-induced monocyte chemotaxis, even when both receptors were blocked simultaneously, both anti-CCR1 antibodies and the CCR1 antagonist were able to inhibit SF-induced monocyte chemotaxis.

Conclusions/Significance

The RA synovial compartment contains several ligands for CCR1, CCR2, and CCR5 as well as other chemokines and receptors involved in monocyte recruitment to the site of inflammation. The results suggest that CCR2 and CCR5 are not critical for the migration of monocytes towards the synovial compartment in RA. In contrast, blockade of CCR1 may be effective. Conceivably, CCR1 blockade failed in clinical trials, not because CCR1 is not a good target, but because very high levels of receptor occupancy at all times may be needed to inhibit monocyte migration in vivo.  相似文献   

4.
CC chemokine ligand (CCL)17 and CCL27 produced by epidermal keratinocytes (KCs) recruit CC chemokine receptor (CCR)4 and CCR10 expressing T cells into the skin, respectively, resulting in enhanced skin inflammation. However, CCR4/CCL17 and CCR10/CCL27 interactions in epidermal KCs have not been investigated. The purpose of this study was to evaluate the role of the CCR4/CCL17 and CCR10/CCL27 loops in cutaneous immune reaction. Normal human KCs (NHKs) and HaCaT KCs expressed both CCR4 and CCR10 at mRNA and protein levels. CCR4 ligand CCL17 but not CCR10 ligand CCL27 induced production of IL-12 p40, granulocyte/monocyte colony-stimulating factor (GM-CSF) and nerve growth factor (NGF) by KCs. Both CCL17 and CCL27 induced migration of KCs in Boyden chamber assay and wound scratch assay. This study revealed that CCR4 and CCR10 are expressed on epidermal KCs and that both are functional in terms of skin cytokine production and/or migration to their ligand CCL17 and CCL27, respectively. Thus this study provided new insight into chemokine/chemokine receptors of KCs.  相似文献   

5.
6.
Wang SW  Wu HH  Liu SC  Wang PC  Ou WC  Chou WY  Shen YS  Tang CH 《PloS one》2012,7(4):e35101

Background

Osteosarcoma is characterized by a high malignant and metastatic potential. CCL5 (previously called RANTES) was originally recognized as a product of activated T cells, and plays a crucial role in the migration and metastasis of human cancer cells. It has been reported that the effect of CCL5 is mediated via CCR receptors. However, the effect of CCL5 on migration activity and integrin expression in human osteosarcoma cells is mostly unknown.

Methodology/Principal Findings

Here we found that CCL5 increased the migration and expression of αvβ3 integrin in human osteosarcoma cells. Stimulation of cells with CCL5 increased CCR5 but not CCR1 and CCR3 expression. CCR5 mAb, inhibitor, and siRNA reduced the CCL5-enhanced the migration and integrin up-regulation of osteosarcoma cells. Activations of MEK, ERK, and NF-κB pathways after CCL5 treatment were demonstrated, and CCL5-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK, and NF-κB cascades. In addition, over-expression of CCL5 shRNA inhibited the migratory ability and integrin expression in osteosarcoma cells.

Conclusions/Significance

CCL5 and CCR5 interaction acts through MEK, ERK, which in turn activates NF-κB, resulting in the activations of αvβ3 integrin and contributing the migration of human osteosarcoma cells.  相似文献   

7.
Internalization of ligand bound G protein-coupled receptors, an important cellular function that mediates receptor desensitization, takes place via distinct pathways, which are often unique for each receptor. The C-C chemokine receptor (CCR7) G protein-coupled receptor is expressed on naive T cells, dendritic cells, and NK cells and has two endogenous ligands, CCL19 and CCL21. Following binding of CCL21, 21 +/- 4% of CCR7 is internalized in the HuT 78 human T cell lymphoma line, while 76 +/- 8% of CCR7 is internalized upon binding to CCL19. To determine whether arrestins mediated differential internalization of CCR7/CCL19 vs CCR7/CCL21, we used small interfering RNA (siRNA) to knock down expression of arrestin 2 or arrestin 3 in HuT 78 cells. Independent of arrestin 2 or arrestin 3 expression, CCR7/CCL21 internalized. In contrast, following depletion of arrestin 3, CCR7/CCL19 failed to internalize. To examine the consequence of complete loss of both arrestin 2 and arrestin 3 on CCL19/CCR7 internalization, we examined CCR7 internalization in arrestin 2(-/-)/arrestin 3(-/-) murine embryonic fibroblasts. Only reconstitution with arrestin 3-GFP but not arrestin 2-GFP rescued internalization of CCR7/CCL19. Loss of arrestin 2 or arrestin 3 blocked migration to CCL19 but had no effect on migration to CCL21. Using immunofluorescence microscopy, we found that arrestins do not cluster at the membrane with CCR7 following ligand binding but cap with CCR7 during receptor internalization. These are the first studies that define a role for arrestin 3 in the internalization of a chemokine receptor following binding of one but not both endogenous ligands.  相似文献   

8.
The chemokine-like, secreted protein product of the U83 gene from human herpesvirus 6, here named vCCL4, was chemically synthesized to be characterized in a complete library of the 18 known human chemokine receptors expressed individually in stably transfected cell lines. vCCL4 was found to cause calcium mobilization as efficiently as the endogenous chemokine ligand CCL2 through the CCR2 receptor, whereas the virally encoded chemokine did not affect any of the other 17 human chemokine receptors tested. Mutual cross-desensitization between CCL2 and vCCL4 was demonstrated in the CCR2-transfected cells. The affinity of vCCL4 for the CCR2 receptor was 79 nm as determined in competition binding against radioactively labeled CCL2. In the murine pre-B lymphocyte cell line L1.2 stably transfected with the CCR2 receptor, vCCL4 acted as a relatively low potency but highly efficacious chemoattractant being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages and monocytes, conceivably for the virus to infect and to establish latency in. It is suggested that vCCL4 during reactivation of the virus in for example monocyte-derived microglia could perhaps be involved in the pathogenesis of the CCR2-dependent disease, multiple sclerosis.  相似文献   

9.
CCL3 (MIP-1alpha), a prototype of CC chemokines, is a potent chemoattractant toward human neutrophils pre-treated with GM-CSF for 15 min. GM-CSF-treated neutrophils migrate also to the selective CCR5 agonist CCL4 (MIP-1beta). CCL3- and CCL4-triggered migration of GM-CSF-primed neutrophils was inhibited by the CCR5 antagonist TAK-779. Accordingly, freshly isolated neutrophils express CCR5. Extracellular signal-regulated kinases (ERK)-1/2 and p38 mitogen-activated protein kinase (MAPK) inhibitors blocked CCL3-induced migration of GM-CSF-primed neutrophils. When the activation of ERK-1/2 and p38 MAPK by CCL3 and the classical neutrophilic chemokine CXCL8 (IL-8) were compared, both the chemokines were capable of activating p38 MAPK. On the contrary, whereas both ERK-1 and ERK-2 were activated by CXCL8, no ERK-1 band was detectable after CCL3 triggering. Finally, neutrophil pre-treatment with GM-CSF activated both ERK-1 and ERK-2. This suggests that by activating ERK-1, GM-CSF renders neutrophils rapidly responsive to CCL3 stimulation throughout CCR5 which is constitutively expressed on the cell surface.  相似文献   

10.
Human memory CD4(+) T cells respond better to inflammatory CCLs/CC chemokines, CCL3 and CCL5, than naive CD4(+) T cells. We analyzed the regulatory mechanism underlying this difference. Memory and naive CD4(+) T cells expressed similarly high levels of CCR1; however, CCR5 was only expressed in memory CD4(+) T cells at low levels. Experiments using mAbs to block chemokine receptors revealed that CCR1 functioned as a major receptor for the binding of CCL5 in memory and naive CD4(+) T cells as well as the ligand-induced chemotaxis in memory CD4(+) T cells. Stimulation of memory CD4(+) T cells with CCL5 activated protein tyrosine kinase-dependent cascades, which were significantly blocked by anti-CCR1 mAb, whereas this stimulation failed to induce these events in naive CD4(+) T cells. Intracellular expressions of regulator of G protein signaling 3 and 4 were only detected in naive CD4(+) T cells. Pretreatment of cell membrane fractions from memory and naive CD4(+) T cells with GTP-gamma S inhibited CCL5 binding, indicating the involvement of G proteins in the interaction of CCL5 and its receptor(s). In contrast, CCL5 enhanced the GTP binding to G(i alpha) and G(q alpha) in memory CD4(+) T cells, but not in naive CD4(+) T cells. Thus, a failure of the ligand-induced activation of CCR1-mediated downstream signaling event as well as a deficiency of CCR5 expression may be involved in the hyporesponsiveness of naive CD4(+) T cells to CCL3 and CCL5.  相似文献   

11.
The adipokine adiponectin is well known to affect the function of immune cells and upregulation of CCL2 by adiponectin in monocytes/macrophages has already been reported. In the current study the effect of adiponectin on CCL2, -3, -4, and -5 and their corresponding receptors CCR1, CCR2, and CCR5 has been analyzed. Adiponectin elevates mRNA and protein of the CC chemokines in primary human monocytes. Simultaneously the surface abundance of CCR2 and CCR5 is reduced while CCR1 is not affected. Downregulation of CCR2 by adiponectin is blocked by a CCR2 antagonist although expression of the CCL2 regulated genes CCR2 and TGF-beta 1 is not altered in the adiponectin-incubated monocytes. CCL2, -3, and -5 concentrations measured in supernatants of monocytes of normal-weight (NW), overweight (OW), and type 2 diabetic (T2D) patients positively correlate with BMI and are increased in obesity and T2D. In contrast CCL4 is similarly abundant in the supernatants of all of these monocytes. The degree of adiponectin-mediated induction of the chemokines CCL3, -4, and -5 negatively correlates with their basal levels and upregulation of CCL3 and CCL5 is significantly impaired in OW and T2D cells. Serum concentrations of these chemokines are almost equal in the three groups and do not correlate with the levels in monocyte supernatants. In conclusion these data demonstrate that adiponectin stimulates release of CCL2 to CCL5 in primary human monocytes, and induction in cells of overweight probands is partly impaired. Adiponectin also lowers surface abundance of CCR2 and CCR5 and downregulation of CCR2 seems to depend on autocrine/paracrine effects of CCL2.  相似文献   

12.
Human embryo implantation is a complex process involving blastocyst attachment to the endometrial epithelium and subsequent trophoblast invasion of the decidua. Chemokines, critical regulators of leukocyte migration, are abundant in endometrial epithelial and decidual cells at this time. We hypothesized that endometrial chemokines stimulate trophoblast invasion. Chemokine receptors CX3CR1 and CCR1 were immunolocalized in human first-trimester implantation sites, specifically to endovascular extravillous trophoblasts, but not to the invading interstitial EVTs (iEVTs), with weak staining also on syncytium. CCR3 was localized to invading iEVTs and to microvilli on the syncytial surface. Expression of CX3CL1 (fractalkine), CCL7 (MCP-3), and their receptors (CX3CR1, CCR1, CCR2, CCR3, and CCR5) mRNA was examined in cellular components of the maternal-embryonic interface by RT-PCR. Both chemokines were abundant in entire endometrium and placenta, endometrial cells (primary cultures and HES, a human endometrial epithelial cell line) and trophoblast cell lines (JEG-3, ACIM-88, and ACIM-32). Chemokine receptor mRNA was expressed by placenta and trophoblast cell lines: CCR1 by all trophoblast cell types, whereas CCR2, CCR3, and CX3CR1 were more variable. CX3CR1, CCR1, CCR2, and CCR5 were also expressed by endometrial cells. Migration assays used the trophoblast cell line most closely resembling extravillous cytotrophoblast (AC1M-88). Trophoblast migration occurred in response to CX3CL1, CCL14, and CCL4, but not CCL7. Endometrial cell-conditioned media also stimulated trophoblast migration; this was attenuated by neutralizing antibodies to CX3CL1 and CCL4. Thus, chemokines are expressed by maternal and embryonic cells during implantation, whereas corresponding receptors are on trophoblast cells. Promotion of trophoblast migration by chemokines and endometrial cell conditioned medium indicates an important involvement of chemokines in maternal-fetal communication.  相似文献   

13.
Following infection, naive T cells are activated in the secondary lymphoid tissue, but then need to move to the infected tissue in the periphery to mediate their effector functions. The acquisition of inflammatory chemokine receptors, such as CCR5 and CCR6, may contribute to the efficient relocation of activated T cells to inflamed sites in the periphery. In keeping with this idea, the present study has demonstrated that CCR5 and CCR6 are up-regulated on CD4+ T cells upon activation in the MLR. The observed increase in expression correlated well with the acquisition of an activated/memory phenotype and was largely (CCR5) or completely (CCR6) separated temporally from the initiation of cell division. In contrast, the regulation of two other chemokine receptors, CXCR3 and CXCR4, occurred in close parallel with the cell division process. Increased mRNA levels are likely to contribute to the enhanced surface expression of CCR5 and CCR6, but in the case of CCR6, translocation of intracellular stores of protein to the cell surface may be an additional mechanism of regulation. The up-regulation of CCR5 was more extensive than that of CCR6, as only approximately half the activated CCR5+ T cells coexpressed CCR6. The increased expression of CCR5 resulted in enhanced chemotaxis toward the CCR5 ligand macrophage-inflammatory protein-1beta/CCL4, but up-regulation of CCR6 did not result in altered chemotactic responsiveness to macrophage-inflammatory protein-3alpha/CCL20, suggesting an alternative function for this receptor.  相似文献   

14.
CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [(125)I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [(35)S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [(35)S]gp120-binding receptors are in the same range (IC(50) ~6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.  相似文献   

15.
During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.  相似文献   

16.
CCL5 (previously called RANTES) is in the CC‐chemokine family and plays a crucial role in the migration and metastasis of human cancer cells. On the other hand, the effect of CCL5 is mediated via CCR receptor. RT‐PCR and flow cytometry studies demonstrated CCR5 but not CCR1 and CCR3 mRNA in oral cancer cell lines, especially higher in those with high invasiveness (SCC4) as compared with lower levels in HSC3 cells and SCC9 cells. Stimulation of oral cancer cells with CCL5 directly increased the migration and metalloproteinase‐9 (MMP‐9) production. MMP‐9 small interfering RNA inhibited the CCL5‐induced MMP‐9 expression and thereby significantly inhibited the CCL5‐induced cell migration. Activations of phospholipase C (PLC), protein kinase Cδ (PKCδ), and NF‐κB pathways after CCL5 treatment was demonstrated, and CCL5‐induced expression of MMP‐9 and migration activity was inhibited by the specific inhibitor of PLC, PKCδ, and NF‐κB cascades. In addition, migration‐prone sublines demonstrate that cells with increasing migration ability had more expression of MMP‐9, CCL5, and CCR5. Taken together, these results indicate that CCL5/CCR5 axis enhanced migration of oral cancer cells through the increase of MMP‐9 production. J. Cell. Physiol. 220: 418–426, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Chemokine receptors play a major role in immune system regulation and have consequently been targets for drug development leading to the discovery of several small molecule antagonists. Given the large size and predominantly extracellular receptor interaction of endogenous chemokines, small molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5 chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5 chemokines (CCL3 and CCL5), with CCR2-like high affinities and potencies throughout the CCR5 signaling unit. Concomitantly, high affinity binding of small molecule CCR5 agonists and antagonists was retained in the transmembrane region. Importantly, whereas the agonistic and antagonistic properties were preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units.  相似文献   

18.
The N-terminal domain of the chemokine CCL5/regulated upon activation normal T cell expressed and secreted (RANTES) has been shown to be critical for its biological activity on leukocytes. Several N-terminus-modified CCL5/RANTES derivatives, such as N-Terminal truncated CCL5/RANTES, Met-RANTES, and amino-oxypentane (AOP)-RANTES exhibited antagonist or partial agonist functions when investigated on the properties of their receptors CCR1, CCR3, and CCR5. Studying 95 African samples from Cameroon, we found a naturally occurring variant of CCL5/RANTES containing a missense mutation located in the first amino acid of the secreted form (S24F). S24F binds CCR1, CCR3, and CCR5 and triggers receptor down-modulation comparable to CCL5/RANTES. Moreover, in CCR5 positive cells, S24F elicits cellular calcium mobilization equivalent to that obtained with CCL5/RANTES. By contrast, S24F does not provoke any response in CCR1 and CCR3 positive cells. As CCL5/RANTES is able to attract different subtypes of leukocytes into inflamed tissue and intervenes in a wide range of allergic and autoimmune diseases, the discovery of this natural N-terminus-modified CCL5/RANTES analogue exhibiting differential effects on CCL5/RANTES receptors, opens up additional perspectives for therapeutic intervention.Nucleotide sequence data reported is available in the DDBJ/EMBL/GenBank databases under the accession number: DQ230537.  相似文献   

19.
During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.  相似文献   

20.
Hwang J  Son KN  Kim CW  Ko J  Na DS  Kwon BS  Gho YS  Kim J 《Cytokine》2005,30(5):254-263
A number of chemokines induce angiogenesis and endothelial cells express several chemokine receptors. To date, only a limited number of CC chemokines for CCR1 have been reported to induce angiogenic responses. We investigated the ability of CCL23 (also known as MPIF-1, MIP-3, or CKbeta8) to promote angiogenesis, which induces chemotaxis of immune cells through CCR1. CCL23 promoted the chemotactic migration and differentiation of endothelial cells, and neovascularization in the chick chorioallantoic membrane. An N-terminal truncated form of CCL23 was at least 100-fold more potent than its intact form and was comparable to that of FGF in the angiogenic activities. Treatment with either pertussis toxin or anti-CCR1 antibody completely inhibited the CCL23-induced endothelial cell migration, indicating that endothelial cell migration was mediated through CCR1. CCL23 didn't promote the migration of HT1080 human fibrosarcoma cells that did not express CCR1. Our results suggest a role of CCL23 in angiogenesis in vitro as well as in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号