首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The ependymal cells bordering the median eminence to the third ventricle are characterised by many microvillus-like projections and bulbous cell processes of the luminal plasma membrane. The latter contain many vesicles 500–1,000 Å in diameter. Cilia with 9+2 fibrillar pattern are seen occasionally. Adhesive devices in the from of zonula adhaerens and zonula occludens are found in the apical part of the intercellular junction. Unmyelinated nerve fibres with a mean diameter of 1 and containing many electron dense granules of 830–1,330 Å are often seen between the ependymal cells.Two types of glial cells are found in the median eminence. One is characterised by a nucleus with dense blods of chromatin and dense cytoplasm, and it is associated chiefly with the nerve fibres in the region of the hypothalamo-hypophysial tract. The other type of glial cell is characterised by fine, uniformly distributed chromatin in the nucleus and a relatively pale cytoplasm and branched processes which terminate perivascularly in the base of the median eminence.Myelinated nerve fibres are seen only in the region of the hypothalamo-hypophysial tract. Only a part of them contain electron dense granules 1,330–2,330 Å in diameter.Three types of unmyelinated nerve fibres can be distinguished in the median eminence according to the size of the electron dense granules they contain: 1. Nerve fibres containing granules 1,330–2,330 Å in diameter. They are seen primarily in the hypothalamo-hypophysial tract, but also in the zona externa; 2. those containing granules with a mean diameter of 1,330 Å; and 3. those containing granules with a mean diameter of 1,000 Å. The last two types are both encountered in the hypothalamo-hypophysial tract, the zona externa and the perivascular region of the base of the median eminence. Under high magnification, the membrane of the granules show evidence of a trilaminar structure and the content of the granules with a low electron density appeares to consist of small microvesicles or globular components. Besides granules, these nerve fibres contain vesicles mostly 420 Å in diameter whose relative number increases towards the perivascular nerve endings. 53 per cent of the inclusions in the hypothalamo-hypophysial tract are granules and 47 per cent vesicles, while the corresponding percentages for the zona externa are 40 and 60 and for the perivascular nerve endings 20 and 80.The mean width of the pericapillary space is 1 , but it varies greatly. It containes many collagen fibrils and fibroblasts. The capillary endothelium is frequently fenestrated and contains many vesicles of various sizes.Two types of granules-containing cells are found in the pars tuberalis depending on the size of the electron dense granules: 1. cells containing granules with a mean diameter of 1,330 Å: and 2. cells containing granules with a mean diameter of 2,000 Å. In addition, there are occasional follicular cavities filled with amorphous material, microvilli and cilia of 9+2 fibrillar pattern.Aided by a grant from the Sigrid Jusélius Stifteise.  相似文献   

2.
Summary Ganglia from Auerbach's plexus of the large intestine (caecum, appendix vermiformis, colon transversum and rectum) in man, rhesus monkey and guinea-pig are composed of nerve cells and their processes, typical Schwann cells and a vast neuropil. The neuropil consists of dendrites and axons of intrinsic nerve cell perikarya and axons of extrinsic neurons. Axonal profiles in large nerve fibre bundles are of uniform size and appearance, embedded in infoldings of Schwann cell cytoplasm and contain occasional large granular vesicles, mitochondria and neurotubules. Preterminal axons widen into vesicle filled varicosities, some of which establish synaptic contact with intrinsic nerve cell bodies.At least three different types of neuronal processes can be distinguished in the myenteric neuropil according to the size, appearance and commutual proportion of vesicles present in axonal varicosities, and their ability to accumulate exogenous 5- and 6-hydroxydopamine and 5-hydroxydopa: 1. Axonal enlargements containing a major population of small electron lucent synaptic vesicles (350–600 Å in diameter) together with a small number of membrane-bound, opaque granules (800–1,100 Å). These profiles have been identified as cholinergic axons. The boutons establish synaptic contacts with dendritic processes of intrinsic nerve cell bodies; membrane specializations are found at the preand postsynaptic sites. 2. Axonal beads of sometimes very large diameter, containing an approximately equal amount of large granular vesicles (850–1,600 Å) and small, electron lucent or faintly opaque vesicles (400–600 Å). The granular core of the large vesicles is of medium electron density and may either fill the entire vesicle or is separated from the limiting membrane by a more or less clear interspace. The fibres probably belong to intrinsic neurons, and because of the similarity of the large, membrane-bound vesicles with neurosecretory elementary granules, they have been designated p-type fibres (polypeptide fibres). The granular core of the vesicles in these fibres becomes more electron dense after treatment with 5-OH-dopa. The accumulation of an amine precursor analogue in combination with a possible storage of a polypeptide substance (or an ATP-like substance) resembles the situation in several diffusely distributed endocrine cell systems. 3. Varicosities of axons equipped with small (400–600 Å) empty or sometimes granular vesicles, medium sized (500–900 Å) vesicles with highly electron dense cores and occasional large (900–1,300 Å) granular vesicles. Pretreatment with 5-OH-dopamine increases the electron density in almost all medium-sized granular vesicles and some of the large granular vesicles; an osmiophilic core develops in some small vesicles. 6-hydroxydopamine results in degenerative changes in the varicosities of this type of neurons. Concomitantly, both catecholamine analogues markedly reduce neuronal noradrenaline in the large intestine, as demonstrated by fluorescence histochemistry and in fluorimetric determinations. The ultrastructural features of these varicosities and their reaction to 5- and 6-OH-dopamine indicate that they belong to adrenergic, sympathetic nerves. No membrane specializations could be detected at sites of close contact of the adrenergic boutons with dendrites and cell bodies of intrinsic nerve cells.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by a grant from Albert Pahlsson's Foundation, Sweden. The work was carried out within a research organization sponsored by the Swedish Medical Research Council (projects No. B70-14X-1007-05B, B70-14X-712-05, and B70-14X-56-06).  相似文献   

3.
Summary The innervation of the pancreas of the domestic fowl was studied electron microscopically. The extrapancreatic nerve is composed mostly of unmyelinated nerve fibers with a smaller component of myelinated nerve fibers. The latter are not found in the parenchyma. The pancreas contains ganglion cells in the interlobular connective tissue. The unmyelinated nerve fibers branch off along blood vessels. Their synaptic terminals contact with the exocrine and endocrine tissues. The synaptic terminals can be divided into four types based on a combination of three kinds of synaptic vesicles. Type I synaptic terminals contain only small clear vesicles about 600 Å in diameter. Type II terminals are characterized by small clear and large dense core vesicles 1,000 Å in diameter. Type III terminals contain small clear vesicles and small dense core vesicles 500 Å in diameter. Type IV terminals are characterized by small and large dense core vesicles. The exocrine tissue receives a richer nervous supply than the endocrine tissue. Type II and IV terminals are distributed in the acinus, and they contact A and D cells of the islets. B cells and pancreatic ducts are supplied mainly by Type II terminals, the blood vessels by Type IV terminals.This work was supported by a scientific research grant (No. 144017) and (No. 136031) from the Ministry of Education of Japan to Prof. M. Yasuda  相似文献   

4.
Summary In the median eminence of the newt a medial region and two lateral regions are described.In cross section, the medial region appears to be made up of 1) an outer or glandular zone (Zone I) containing aldehyde-thionine-positive and negative nerve fibres and blood capillaries. Nerve fibres appear aligned in palisade array along the capillaries. 2) An inner zone (Zone II) made up of a) a layer of aldehyde-thionine-positive nerve fibres (fibrous layer) belonging to the preoptic hypophyseal tract and b) a layer of ependymal cells lining the infundibular lumen and reaching the blood vessels with their long processes.The lateral regions display a less pronounced stratification and aldehyde-thionine positive nerve fibres are nearly absent.A slender lamina (ependymal border) containing mainly aldehyde-thionine-positive nerve fibres and ependymal cells connects the median eminence to the pars nervosa.At the ultrastructural level, in the outer zone of the medial region at least 4 types of nerve fibres and nerve endings are identified:Type I nerve fibres containing granular vesicles of 700–1000 Å and clear vesicles (250–400 Å).Type II nerve fibres containing granular vesicles and polymorphous granules of 900–1300 Å and clear vesicles (250–400 Å).Type III nerve fibres containing dense granules of 1200–2000 Å and clear vesicles of 250–400 Å.Type IV nerve fibres containing only clear vesicles of 250–400 Å. In the inner zone too, all these nerve fiber types are found among ependymal cells, while the fibrous layer consists of nerve fibres containing granules of 1200–2000 Å in diameter.In the lateral regions Type I, Type II and Type IV nerve fibres and their respective perivascular terminals are found; axons containing dense granules (1200–2000 Å) are scanty. In these regions typical synapses between Type I nerve fibres and processes rich in microtubules are visible.The classification and functional significance of nerve fibres in the median eminence are still unsolved, but it may be assumed that nerve fibres of the medial region belong to both the preoptic hypophyseal and tubero hypophyseal tract, while the lateral regions are characterized by nerve fibres of the tubero hypophyseal tract. Peculiar specializations of the ependymal cells in the median eminence of the newt are also discussed.Work supported by a grant from the Consiglio Nazionale delle Ricerche.The authors are indebted to Mr. G. Gendusa and P. Balbi for technical assistance.  相似文献   

5.
Summary In the frog median eminence, fixed with glutaraldehyde and osmium tetroxide, four types of nerve endings can be generally distinguished. These endings are in contact with the pericapillary spaces of primary portal vessels and can be identified by the internal structure and the size of their granules and vesicles. Type 1 contains large granules (1500–2400 Å in diameter) and small clear vesicles (300–500 Å in diameter), type 2 intermediate granules (about 1100–1700 Å in diameter) and small clear vesicles, type 3 small granules (about 600–1000 Å in diameter) and small clear vesicles, type 4 only numerous small clear vesicles. The mixed types containing the large, intermediate and small dense granules in the same ending are infrequently found.After KMnO4 or LiMnO4 fixation the granules and vesicles mentioned above are observed as follows. The large granules in the type 1 nerve ending appear mostly pale or less-dense. The intermediate granules in the type 2 also appear mostly pale or less-dense, but some frequently show granules of high density. The small granules in the type 3 consistently contain the dense substance and these endings can be subdivided into two different types according to the populations of different sizes of dense granules [type 3a (900–1000 Å) and type 3b (500–800 Å)]. Dense-cored and cleared-synaptic vesicles are frequently present with together in the type 3 endings. The small vesicles (300–400 Å), in the type 4, appear generally pale (type 4a), but some nerve endings contain small dense cored-vesicles (type 4b).The author wishes to thank Prof. H. Fujita for his advice and criticism.  相似文献   

6.
Summary The human posterior pituitary obtained at operation was studied with the electron microscope.The fine structure of the human neurohypophysis was found to be basically similar to that of the other mammalian and cold-blooded vertebrates examined.In addition to the nerve fibres and their swellings two cell types were seen: the pituicytes and the cells in the perivascular spaces — the fibroblasts.The distribution, size and shape of the pituicytes was variable. Long pituicyte processes were seen (sometimes > 20 in length) running between nerve fibres and their swellings, and ending on or in the perivascular space.Several types of large nerve swellings were seen: a) those containing only elementary granules, mitochondria and small vesicles; b) modified swellings characterised by contorted mitochondria and mitochondrial fragments. The latter were often surrounded by single or multiple highly osmiophilic myelin-like membranes; c) multilamellar bodies characterised by concentric osmiophilic myelin-like membranes or lamellae apparently dividing the swellings into separate compartments. The small vesicles, appearing in considerable numbers in such swellings, are suggested to originate from the osmiophilic lamellae.While some true synaptic vesicles may occur in non-secretory nerve fibres, the small vesicles (250–600 Å) seen in most nerve fibre swellings were thought to be derived from elementary granules.Repeated swellings were seen in individual nerve fibres and their functional significance discussed.The electron-dense material within the elementary granules was variable and is suggested to be dependent on the functional state of the neurohypophysis rather than on hormone content. Internal structure was often seen in the elementary granules. The impression is gained that the osmiophilic content of the elementary granules was composed of microvesicles possibly representing molecular aggregations of the hormone-neurophysin complex.  相似文献   

7.
Summary The fine structure of neurosecretory nerves and endings associated with the sheath of the infraesophageal ganglion ofHelix aspersa is described. The sheath is a neurohemal organ whose vascularized stroma receives both monoaminergic and peptidergic endings. The latter occur along the surface of the nerves or scattered within the stroma. They include a complex population of vesicular profiles. The granular vesicles (1300–3000 Å in diameter) exhibit structural modifications that may be related to the intra-axonal release of their neurohormones. The agranular vesicles (500–2000 Å in diameter) occur in large numbers and lie mostly adjacent to the axon surface. Synaptoid specializations seem to represent active sites for the extracellular discharge of neurosecretory material. The monoaminergic endings so far studied lack synaptoid specializations and contain small granular (800–1300 Å in diameter) and agranular (700 Å in diameter) vesicles. Two kinds of non-neural cells are associated with the nerves: glial cells and melanocytes.Partly supported by Conicyt (Grant 105) and Comisión de Investigación Científica Universidad de Chile (Grant 48). The technical assistance of Mr. Arnold van Dun is gratefully acknowledged. We also thank the Department of Physics, Faculty of Physical Sciences and Mathematics, University of Chile, for the use of a Philips EM-300 electron microscope.  相似文献   

8.
Summary The cerebral ganglion and the ventral nerve cord of Lumbricus terrestris have been studied with the electron microscope. The results are as follows: In the neuropile small granular vesicles (300 to 500 Å) occur in some varicose nerve fibres after fixation with potassium permanganate. This indicates the presence of noradrenaline. Sometimes only a few of the vesicles produce a positive reaction. After incubation with -methyl-noradrenaline the numbers of nerve terminals with small granular vesicles greatly increase, indicating the presence of dopamine and/or 5-hydroxytryptamine. In this case the reaction is now complete. The number of small granular vesicles is largest in the terminal swellings.These findings are consistent with histofluorescence, chemical, and microspectrofluorometric analyses, which have demonstrated noradrenaline, dopamine, and 5-hydroxytryptamine in neurones in the central nervous system.Large granular vesicles (600 to 900 Å) are to be found in some perikarya, not identical with neurosecretory cell bodies. In this case the granular vesicles in the axon are smaller and fewer. This indicates a simultaneous proximo-distal transport and gradual decrease in size of the granular vesicles. The intraneuronal distribution of the vesicles is in agreement with the distribution of the fluorophores in the fluorescent neurones.Neurosecretory neurones are found most likely not to contain monoamines.This work was supported by grants from the Helge Axison Johnson Foundation, the Magn. Bergvall Foundation, and the Roy. Physiographic Society at Lund.I am greatly indebted to Mrs. Lena Eriksson, Miss Rita Jönsson, Miss Inger Norling, Mrs. Lena Svenre, and Mr. Henryk Keff for their excellent technical assistance.  相似文献   

9.
Summary Apart from cholinergic nerve fibers, which make up the main part of efferent fibers to the avian adrenal gland (Unsicker, 1973b), adrenergic, purinergic and afferent nerve fibers occur. Adrenergic nerve fibers are much more rare than cholinergic fibers. With the Falck-Hillarp fluorescence method they can be demonstrated in the capsule of the gland, in the pericapsular tissue and near blood vessels. By their green fluorescent varicosities they may be distinguished characteristically from undulating yellow fluorescent ramifications of small nerve cells which are found in the ganglia of the adrenal gland and below the capsule. The varicosities of adrenergic axons exhibit small (450 to 700 Å in diameter) and large (900 to 1300 Å in diameter) granular vesicles with a dense core which is usually situated excentrically. After the application of 6-hydroxydopamine degenerative changes appear in the varicosities. Adrenergic axons are not confined to blood vessels but can be found as well in close proximity of chromaffin cells. Probably adrenergic fibers are the axons of large ganglion cells which are situated mainly within the ganglia of the adrenal gland and in the periphery of the organ and whose dendritic endings show small granular vesicles after treatment with 6-OHDA.A third type of nerve fiber is characterized by varicosities containing dense-cored vesicles with a thin light halo, the mean diameter (1250 Å) of which exceeds that of the morphologically similar granular vesicles in cholinergic synapses. Those fibers resemble neurosecretory and purinergic axons and are therefore called p-type fibers. They cannot be stained with chromalum-hematoxyline-phloxine. Axon dilations showing aggregates of mitochondria, myelin bodies and dense-cored vesicles of different shape and diameter are considered to be afferent nerve endings. Blood vessels in the capsule of the gland are innervated by both cholinergic and adrenergic fibers.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).  相似文献   

10.
Summary Receptor cells in the epithelium and the basiepithelial nerve net of the prostomium of Lumbricus terrestris were investigated with electron microscope with special regard to the presence of monoamines. The receptor cells are found in groups of about 40 intermingled with supportive cells. After pretreatment with -methyl-noradrenaline and fixation with potassium permanganate a few receptor cells in each group and some nerve fibres in the basiepithelial nerve net contain small granular vesicles (about400 Å) characteristic for monoaminergic neurons. The distribution and relative number of these receptor cells and nerve fibres coincide well with previous reports on fluorescent receptor cells and varicose fibres. That the monoamine-storing small granular vesicles not are visualized until pretreatment with -methyl-noradrenaline is in accordance with recent microspectrofluorometric analysis, which shows that dopamine is the only primary monoamine present in the epithelium.In the epithelium there are occasional receptor cells and nerve fibres containing large vesicles (1000–1800 Å) which resemble the neurosecretory vesicles in the central nervous system. Photoreceptor cells having an intracellular cavity with microvilli and cilia have infrequently been observed at the base of the epithelium.No synapses on the mucous cells have been noticed. Nor have any synaptic specializations been observed in the basiepithelial nerve net. The morphological conditions necessary for the existence of possible axo-axonal synapses are briefly discussed.This work was supported by grants from the Helge Ax: son Johnson Foundation and the Magn. Bergvall Foundation.  相似文献   

11.
Summary The present study deals with the electron microscopic observations on the softshelled turtle paraventricular organ, with special reference to the relationship of the ependymal cells and the so-called albuminous substances. It is shown that the so-called albuminous substances consist of the tips of neuronal processes extending into the ventricular lumen. They probably arise from the nerve cells lying within the hypendymal or the underlying tissue. The ependymal cells of the PVO themselves are basically similar in structure to those of any other animal.The processes observed contain two types of vesicles, namely: the clear vesicle, 500 to 1600 Å in diameter, and the cored vesicle, measuring 600 to 1500 Å in diameter, which has a distinct membrane enclosing an extremely dense core of variable sizes. The functional significance of these vesicles is discussed in relation to that of inclusions in the neurosecretory and the autonomic nerve fibers in the hypothalamus.The findings indicate that in the terminal endings of the processes a production or formation of vesicles might occur and that these vesicles might be discharged into the cerebrospinal fluid by microapocrine secretion.The author's grateful thanks are due to Prof. E. Yamada for his continuously kind guidances and due to Prof. T. Sakurai for his constant encouragement.  相似文献   

12.
Summary Nerve fibres, running longitudinally as well as circularly between the core lamellae in the Herbst corpuscle are described.These fibres are morphologically different from the central afferent axon. They are most frequently observed in the outer part of the core, and contain inter alia numerous agranular vesicles measuring approx. 450 Å in diameter, dense core vesicles with a diameter approx. 800 Å and microtubuli (250 Å). Occasional specialized junctions are seen between the nerves and the neighbouring lamellae.This study was supported by the Norwegian Council of Agricultural Research.  相似文献   

13.
Summary The fine structure of the preterminal nerve fibers of the rabbit myometrial smooth muscle was studied using potassium permanganate fixation or glutaraldehyde fixation with postosmification. The preterminal fibers were mostly formed by 2–10 axons enveloped by Schwann cells. Two kinds of axons and axon terminals were found. (1) Adrenergic axons, which contained many small, granular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å) which represented ca. 2% of the total count of the vesicles. (2) Nonadrenergic axons, which contained small agranular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å). Both types of axons formed preterminal varicosities along their course. The real terminal varicosities, representing the anatomical end of the axons, were usually larger than the preterminal ones and showed close contact to the plasma membranes of the smooth muscle cells. Both adrenergic and nonadrenergic terminals were found close to the smooth muscle cells, but a gap of at least 2000 Å was always present between the two cell membranes. The axons and preterminal varicosities of both types of nerves were in intimate contact with each other within the preterminal nerve fiber. Axo-axonal interactions between the two types of axons are possible in the rabbit myometrium. The relative proportion of the nonadrenergic axons from the total was about one fourth.  相似文献   

14.
Summary The neurohypophysis of the South American lungfish Lepidosiren paradoxa has been studied with light and electron microscopy, including the Falck-Hillarp technique for catecholamines. The pars nervosa hypophyseos is a well-marked, dorsally located subdivision of the pituitary gland composed of lobes or follicles, each one constituted of a central core of ependymal cells, a subependymal hilar region made up of nerve fibers and a peripheric palisade zone of nerve endings which contact capillary vessels. Four types of neurosecretory axons can be distinguished under the electron microscope. Type I, the most common, contains spherical elementary granules of high electron density, 1500–1800 Å in diameter. The scarce type II axons contain irregularly-shaped elementary granules. Type III contains only small clear vesicles, 400–600 Å in diameter. Type IV, mostly present in regions of the gland contacting the pars intermedia, contain large granulated vesicles, 900–1000 Å in diameter. The Falck-Hillarp technique revealed axons with a positive reaction for catecholamines at sites corresponding approximately to the location of type IV of the electron microscope.Ependymal cells are of large size, linking the cerebrospinal fluid, the nerve endings and the blood vessels. A conspicuous membrane-bound, spherical dense material, 1400–2000 Å in diameter, is observed in both the apical and vascular processes of these cells. The ependymal processes which traverse the hilar and palisade regions contain structures resembling degenerated neurosecretory axons. These results are discussed in relation with the currently available information on the comparative anatomy of the pars nervosa. The possible functional significance of ependymal cells and of each type of axon are also discussed.This study was aided by the following grants: NIH NS 06953 to Prof. De Robertis, Consejo Nacional de Investigaciones Científicas y Técnicas to Prof. Zambrano, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires and Comisión de Investigaciones Cientificas de la Universidad Nacional de la Plata: to Prof. Iturriza.The authors are indebted to Prof. De Robertis for his generosity in granting us his laboratory facilities, and to Dr. F. J. J. Risso and Mr. A. Fernández (Resistencia, Chaco) who provided the specimens used in this study. The able microtechnical assistance of Miss L. Riboldazzi and Mrs. R. Raña and the photographic work of Mr. A. Saenz are much appreciated.Members of the Scientific Career, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.  相似文献   

15.
Summary The central catecholamine innervation of the pituitary neural lobe and pars intermedia of the rat have been identified ultrastructurally and their organization has been investigated in a combined fluorescence histochemical and electron microscopical study. The dopamine analogues, 5-hydroxydopamine and 6-hydroxydopamine, were used to label the catecholamine terminals, and to enable the direct correlation between the fluorescence microscopical and the electron microscopical pictures.The fibre type that was identified as catecholamine-containing was ultrastructurally chiefly characterized by dense-cored vesicles, 500–1200 Å in diameter, intermingled with varying numbers of small empty vesicles. 5-hydroxydopamine was selectively accumulated in these fibres and caused an increased electron density of the granular vesicles as well as of some small normally agranular vesicles, and systemically administered 6-hydroxydopamine caused a selective degeneration of these fibres, most prominently within the neural lobe. The dopaminergic terminals of the neural lobe showed frequent close contacts (80–120 Å), without real membrane thickenings, to neurosecretory axons and to pituicyte processes. It is suggested that these close contacts might signify a direct dopaminergic influence on the neurosecretory axons and/or on the pituicyte processes. The identified central catecholamine fibres were also found to make common synapse-like contacts on the pars intermedia cells, whereas the innervation by neurosecretory fibres was very rare. This suggests that the direct central nervous control of the rat pars intermedia is exerted by the catecholamine neurons. A very special feature of the catecholamine fibres in the pituitary is the occurrence of peculiar, large dopamine-filled droplet-like swellings. Electron microscopically, such large axonal swellings (more than 2 in diameter) were found to contain, in addition to the characteristic vesicles and organelles, strongly osmiophilic lamellated membrane complexes resembling myelin bodies and multivesicular bodies encircling disintegrated vesicles, suggesting that these droplet fibres represent dilated stumps of spontaneously degenerating dopaminergic axons. It is suggested that the dopaminergic neural lobe fibres are undergoing continuous reorganization through degeneration—regeneration cycles, a phenomenon previously suggested for the neurosecretory axons of the neural lobe.Supported by the Deutsche Forschungsgemeinschaft.Supported by Svenska Livförsäkringsbolags Nämnd för Medicinsk Forskning, by The Medical Faculty, University of Lund and by the Ford Foundation.  相似文献   

16.
Summary According to the internal structure and size of the granules, six types of nerve endings can be distinguished in the toad median eminence: 1. Endings containing mostly dense granules of 600 Å in diameter; 2. Endings containing dense granules of about 800 Å in diameter; 3. Endings which contain dense granules 1,000–2,000 Å in diameter, with the peak at 1,200–1,400 Å; 4. Endings containing granules with a characteristic structure, which differentiate them from the other three types; 5. Scarce endings containing granules 2,000 to 3,800 Å in diameter; and 6. Endings containing only vesicles 400–500 Å in diameter. Types 3 and 4 endings are mainly found in the outer pericapillary zone, and are probably responsible for the strong Gomori-positive reaction observed in this zone. The other four types of endings occur mainly in the inner pericapillary zone, and appear to be Gomori-negative.The probable origins of the different types of endings, and their possible relations with the different releasing factors is discussed.The subendothelial basement membrane has numerous long processes which form a complicated network in contact with all the nerve endings, some nerve fibres and glial cells.Two types of glial cells are described. Pinocytotic vesicles are frequently seen at the points where these cells contact the basement membrane. All the ultrastructural features suggest that these cells are carrying out transport functions.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.The author is very grateful to Professor H. Heller for his continued encouragement and criticism and to Mr. J. Lane and Mr. P. Heap for their valuable help.  相似文献   

17.
Summary In the tortoise Testudo graeca, the lizards Lacerta dugesi and Lacerta pityusensis, and the snake Natrix natrix, the innervation of the testicular interstitial tissue was studied by light and electron microscopy, the acetylcholinesterase (ache) technique, the Falck-Hillarp method for the detection of catecholamines, and the application of 6-hydroxydopamine. The intertubular spaces of the reptilian testes studied contain adrenergic nerve fibers the amount and distribution of which varies considerably both in various species and in various stages of the reproduction cycle. Nerve fibers do not enter the seminiferous epithelium. Fluorescence microscopy of the lizard testis reveals catecholaminergic varicosities which are mainly arranged around blood vessels, but do not show obvious connexions to Leydig cells. Ache-positive fibers are equally distributed in lizard testes surrounding each seminiferous tubule. In Natrix natrix ache-positive fibers are irregularly spread among groups of tubules, without showing a definite relation to Leydig cells either. By electron microscopy bundles of unmyelinated axons and axon terminals can be more easily detected in the testes of immature animals than in adult. Terminals of nerve fibers containing small (400–500 Å in diameter) and large (800–1400 Å) dense-cored vesicles and sometimes small clear vesicles establish contacts with Leydig cells. Three types of contact are described. 1. Contacts par distance at a distance of about 2000 Å and basal lamina interposed; 2. membranous contacts having a 200 Å gap only between axolemma and Leydig cell plasmalemma; 3. invaginations of terminals into Leydig cell perikarya. The latter may exhibit surface specialisations, which strongly resemble postsynaptic membrane thickenings. Experiments using 6-hydroxydopamine underline the adrenergic character of testicular nerve fibers, which can be regarded as another example of non-cholinergic, ache-positive neurons. In the testis of the immature tortoise profiles of axons occur which probably represent purinergic, ache-positive neurons.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).I am much indebted to Mrs. R. Sprang for her skillfull technical assistance.  相似文献   

18.
E Fehér  J Vajda 《Acta anatomica》1979,104(3):340-348
The interneuronal synapses of the urinary bladder in the cat were studied by electron microscopy. The great majority of the fibres containing vesicles are found within the ganglia occurring in the trigonum area. Morphologically differentiated synaptic contacts could be observed on the surface of the local neurons and between the different nerve processes. The presynaptic terminals can be divided into three types based on a combination of synaptic vesicles. Type I terminals, presumably cholinergic synaptic terminals, contain only small clear vesicles of 40-50 nm in diameter. Type II terminals, presumably adrenergic terminals, are characterized by small granulated vesicles of 40-60 nm in diameter. Type III terminals, probably of local origin, contain a variable number of large granulated vesicles of 80-140 nm in diameter. Occasionally, a single nerve fibre contacted several (two or four) other nerve processes forming a typical synapse. In other cases, on one nerve cell soma or on other nerve processes there are two or three different-type nerve terminals establishing synapses. It might be inferred from these observations that convergence and divergence can occur in the local ganglia and that cholinergic and adrenergic synaptic terminals can modulate the ganglionic activity. However, a local circuit also can play an important role in coordinating the function of the bladder.  相似文献   

19.
Summary Ultrastructures of human and rabbit thrombocytes reveal specific subcellular organelles within these elements. Serotonin granules are demonstrated containing extremely electron opaque material in vesicles with an average diameter of 1,700 Å and a considerable number of large dense bodies (average size 4,000 Å in diameter) is seen. The latter are less electron dense as compared to the serotonin granules. The appearance of serotonin granules in the human thrombocyte is rare, while rabbit platelets show a higher number of these granular vesicles.Acid phosphatase activity in the large dense bodies of human and rabbit platelets has been demonstrated by means of electron microscopy. Present results together with currently available biochemical information are briefly discussed in relation to the lysosomal activity within the thrombocytes.  相似文献   

20.
Summary The structure of the pars intermedia of the ferret has been studied with the electron microscope, with particular reference to the morphology of the glandular cells and their innervation. Two types of cell were found. The predominant cell is ovoid in shape and contains membrane-bound vesicles of varying size (1,000–5,000 Å) and density, the most electron-dense of which are associated with the Golgi region. The nucleus is indented and the cytoplasm contains rough endoplasmic reticulum. The second cell type is often associated with the colloid material and is elongated or stellate-shaped with long processes which extend between the predominant cells. It is devoid of cytoplasmic vesicles and has a poorly defined Golgi apparatus. Certain other structural features of this cell such as microvilli, cilia or cytoplasmic microfilaments are reminiscent of ependymal cells.Numerous nerve endings are observed throughout the pars intermedia, making synaptic contact with the predominant cell type. The majority contain vesicles with an electron-dense core measuring 750 Å; less frequently terminals contain dense granules measuring 1,000 A or more. Both also contain small electron-lucent vesicles (200–400 Å); occasionally terminals containing only the latter type are found. The pattern of innervation in the ferret is thus comparable to that previously observed in the cat, rather than that seen in rodents or monkeys, and the implications of this finding are discussed.We are indebted to Prof. Sir Solly Zuckerman, O. M., K. C. B., F. R. S., for his help and guidance and to Mr. J. Wallington for his unfailing technical assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号