首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A trade‐off between dispersal ability and reproduction is generally thought to explain the persistence of wing dimorphism in insects, although this trade‐off has received minimal attention in male insects. Research on male sand cricket, Gryllus firmus, supports the trade‐off hypothesis insofar as flight capable cricket’s spend significantly less time signalling for potential mates than their flightless counterparts. By contrast, here I show that this expected trade‐off between signalling time and wing dimorphism does not exist in a male congener, the Texas field cricket (Gryllus texensis). In G. texensis, flight capable males signal twice as often as flightless males. Thus, unless male G. texensis express trade‐offs between dispersal ability and other, presently unmeasured components of reproduction, the trade‐off hypothesis may not explain the persistence of wing dimorphism in all male insects.  相似文献   

2.
Differences in the growth of dorsolongitudinal flight muscles and gonads in 1–28 days old long-winged (macropterous) and short-winged (brachypterous) adults of the firebug (Pyrrhocoris apterus L.) and the resource allocation to these organs were studied by means of total protein analysis. We found predominant allocation of food resources to flight muscles compared to reproductive organs in both macropterous males and females during the first 5 days of adult life. Subsequent histolysis of developed flight muscles coincided with increased total protein content in some reproductive organs. Initiation of intensive food intake after starvation or application of higher dose of methoprene on macropterous adults changed the resource allocation in favour of growth of reproductive organs and induced precocious histolysis of flight muscles. It indicates an involvement of juvenile hormone in wing morph-related differential allocation of resources in the bug. Increased total protein contents in the ovaries and accessory glands of starved macropterous females and males treated with methoprene, respectively, indicate that proteins derived from the methoprene-induced histolysis of the flight muscles are re-utilized for the growth of the reproductive organs. It is the first report of persistence of differential resource allocation to flight muscles and reproductive organs in the wing-polymorphic insects with non-functional macropterism.  相似文献   

3.
The aim of this paper was to analyse the active dispersal of Triatoma infestans and the role of chickens as passive carriers of this insect in peridomestic areas of La Rioja, Argentina. To measure active dispersal, monthly catches were made on six consecutive nights for five months (in the warm season) using light traps (for flying insects) and sticky dispersal barriers (for walking insects). The nutritional and reproductive states of adults were evaluated. Over the course of the sampling period, a total of eight flying adults, six walking nymphs and 10 walking adults of the species T. infestans were captured, as well as specimens of Triatoma guasayana, Triatoma eratyrusiformis and Triatoma platensis. Our data demonstrate for the first time that females of T. infestans can disperse by walking. This may be an adaptive strategy because it allows them to move with eggs and/or with good blood reserves, which are not possible when flying. All flying and walking individuals of both genders were of an appropriate physiological state that would allow for colonisation of the target habitat. However, manual inspection of 122 chickens suggests that it is unlikely that these animals passively transport T. infestans. Finally, the dispersal activity of T. infestans was compared with other triatomines using a dispersion index.  相似文献   

4.
Summary Habitat change by means of flight activities has been observed in the life cycle of the univoltine, macropterous species Amara plebeja Gyll. The hibernation- and reproduction habitats are quite different, viz. deciduous trees and grass vegetation, respectively. Young as well as old females and males are present in both habitats, but at different periods of the year. The flight muscles are generally autolysed but apparently only temporarily. After complete reconstruction of the flight muscles, habitats are changed by mean of flying both in spring and in autumn, if weather conditions are favourable. In spring, when the individuals are flying from hibernation to reproduction habitat they may be drifted by air currents, whereby migration becomes dispersal, and founding or refounding of populations in suitable localities may result. During the autumn, the insects fly from reproduction to hibernation habitats orientating towards distinct silhouettes in the landscape.Communication No. 185 of the Biological Station, Wijster  相似文献   

5.
The beet armyworm, Spodoptera exigua, undertakes long-distance migration. We used flight mills to investigate the interaction between flight and reproduction in this species given the apparent absence of the oogenesis-flight syndrome. This syndrome, common in many migratory insects, is characterized by a suite of traits including migration during the pre-oviposition period followed by a switch to oogenesis. No negative effects of inter-ovipositional flight on lifetime fecundity were observed. Instead, adult reproductive output suffered when female flight was initiated the first day after eclosion and before oviposition, suggesting that migratory flight overlaps with the oviposition period rather than being confined to the pre-oviposition period. Mating status of both females and males had no negative influence on their flight performance except that flight distance and flight duration of 7-day-old mated females were significantly less than in unmated females. Furthermore, the number of eggs produced and mating frequency of females less than 7 days of age were not significantly correlated with flight performance, suggesting reproductive development paralleled and was independent of migratory behavior. This independent relationship between flight and reproduction of adults is consistent with the very short pre-oviposition period in this species, and suggests that resources are partitioned between these activities during pupal development. Together, our results uncovered neither obvious trade-offs nor mutual suppression between flight and reproduction in S. exigua, which indicates the lack of an oogenesis-flight syndrome for coordination of these two energy-intensive processes. We propose a conceptual model of migration for this species based on the current and previous studies.  相似文献   

6.
The dispersal capacity of rare and endangered insect species has rarely been estimated even though it is essential for their management. For these species, laboratory based experiments are considered more appropriate for determining dispersal capacity as well as the factors influencing it. We aimed to characterize dispersal capacity of the endangered saproxylic beetle Osmoderma eremita (Scopoli, 1763) (Coleoptera: Cetoniidae). We studied the influence of sex and body condition on several parameters of dispersal (seven parameters of flight capacity measured in laboratory and pre-flight behaviour observed in the wild). Tethered flight experiments, conducted on 30 individuals collected in several regions of France, revealed: (1) maximal single flight distance of 1,454 m and maximal total flight distance of 2,361 m; (2) higher flight capacity in females than males; (3) flight speed and take-off completion decreasing with increasing body condition only for females. Additionally, 32 individuals displaying pre-flight behaviour in the wild showed similar interacting influences of sex and body condition: females initiating pre-flight behaviour had lower body condition than males. Thus, males and females have different dispersal strategies. We propose that body condition influences on dispersal capacity should be considered for species conservation by, for instance, managing adult food resources at the landscape scale and need to be taken into account in introduction programmes.  相似文献   

7.
Adverse environmental conditions constrain active flight and thereby limit reproduction in most insects. Butterflies have evolved various adaptations in order to thermoregulate, allowing females to search for nectar and to oviposit under unfavorable thermal conditions. We studied experimentally and with observational data the effect of low ambient temperatures experienced in the morning on the timing of oviposition and clutch size in the Glanville fritillary butterfly (Melitaea cinxia). Comparisons were made between individuals with different forms of the gene Pgi, encoding the glycolytic enzyme phosphoglucose isomerase, since naturally segregating variation at Pgi is known to be correlated with flight metabolic rate, flight performance, and fecundity. Experiencing low temperature in the morning delayed the initiation of oviposition and decreased clutch size. We used a thermal image camera to measure the thoracic surface temperature of butterflies immediately after voluntary flight. Single nucleotide polymorphism at Pgi was associated with thoracic temperature at low ambient temperatures. This has consequences for reproduction because females that are able to fly at lower ambient temperatures generally initiate oviposition earlier in the afternoon, when the environmental conditions are most favorable and the average egg clutch size is generally largest. These results suggest that variation in physiological and molecular capacity to sustain active flight at low ambient temperature has significant fitness-related consequences in insects.  相似文献   

8.
ABSTRACT. The existence of a trade-off between flight and reproduction in the migratory noctuid, Spodoptera exempta (Wlk.), was examined in experiments in which female moths were flown on flight balances and then provided with distilled water or sucrose solution. For individuals flight-tested from the night of eclosion (night 0) through night 1 and fed only distilled water, there was a linear, negative relationship between weight-related fecundity and flight duration. When flight was recorded through night 2, a curvilinear relationship was obtained suggesting that highly active moths suffer a smaller decrease in fecundity than predicted from its rate of decline with increasing flight duration in less persistent fliers. The hypothesis that this reflects an energetically expensive, initial phase of each flight, followed by a less costly, cruising phase is examined. Fecundity was independent of flight duration in females provided with sucrose after flight but was related to moth weight, as it was in all unflown moths. Effects of flight and feeding on longevity and mating frequency are also reported.
There is a clear trade-off between flight and fecundity in S.exempta which is only evident in moths denied access to a source of carbohydrate after flight. The results indicate the importance of nectar sources in the field in allowing restoration of lipid reserves depleted during migratory flight. An important implication of this conclusion is that lipid is the resource limiting to fecundity in this species and not protein as is generally supposed for leaf-feeding insects. This might be expected in highly active species as lipid is the resource for which the energetically expensive functions of flight and reproduction must compete.  相似文献   

9.
Tribolium castaneum (Herbst) has been used as a model organism to develop and test important ecological and evolutionary concepts and is also a major pest of grain and grain products globally. This beetle species is assumed to be a good colonizer of grain storages through anthropogenic movement of grain, and active dispersal by flight is considered unlikely. Studies using T. castaneum have therefore used confined or walking insects. We combine an ecological study of dispersal with an analysis of gene flow using microsatellites to investigate the spatiotemporal dynamics and adult flight of T. castaneum in an ecological landscape in eastern Australia. Flying beetles were caught in traps at grain storages and in fields at least 1 km from the nearest stored grain at regular intervals for an entire year. Significantly more beetles were trapped at storages than in fields, and almost no beetles were caught in native vegetation reserves many kilometres from the nearest stored grain. Genetic differentiation between beetles caught at storages and in fields was low, indicating that although T. castaneum is predominantly aggregated around grain storages, active dispersal takes place to the extent that significant gene flow occurs between them, mitigating founder effects and genetic drift. By combining ecological and molecular techniques, we reveal much higher levels of active dispersal through adult flight in T. castaneum than previously thought. We conclude that the implications of adult flight to previous and future studies on this model organism warrant consideration.  相似文献   

10.
  • 1 The flight apparatus in butterflies, as well as in other insects, is costly to manufacture. Since most animals live in a world where resources are limited, trade‐offs are expected and available resources must thus be allocated between flight and other functions, such as reproduction.
  • 2 To mitigate this trade‐off, previous studies have shown that butterflies can break down flight muscles in the thorax as they age in order to use muscle nutrients for reproduction.
  • 3 Although breakdown of flight muscles is expected to reduce flight ability, relative flight muscle mass (thorax mass/body mass) in many butterfly species does not decrease with age. The aim of the present study was to test the relationship between flight endurance and adult age in the green‐veined white butterfly Pieris napi (L.). The tests were performed in the laboratory at five different temperatures.
  • 4 The results showed that age has a significant influence on butterfly flight endurance; older butterflies showed reduced flight endurance. Male butterflies fly for a longer time than females and flight endurance increases with temperature in both sexes.
  相似文献   

11.
Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12–27 mm forewing length (~40–660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.  相似文献   

12.
Different mating systems in group-living animals have characteristic behavioral correlates that are primarily related to mate competition. Mate competition may push individuals to selectively make dispersal decisions for the purpose of maximizing of opportunities for reproduction. The Sichuan snub-nosed monkey (Rhinopithecus roxellana) is a polygynous primate species endemic to China. We provide the first data on female dispersal in a free-ranging group of R. roxellana in the Zhouzhi National Nature Reserve, Qinling Mountains, China. Both adult and subadult female dispersal occurred. Immigration/emigration rates of adult females are higher than those of subadult females. Mate competition is one apparent driving force behind adult female dispersal, and inbreeding avoidance is the possible proximate factor influencing subadult female dispersal. Adult female R. roxellana employ various reproductive strategies related to dispersal, which may increase their reproductive success.  相似文献   

13.
Modelling moth dispersal in relation to wind direction and strength could greatly enhance the role of pheromone traps in biosecurity and pest management applications. Anemotaxis theory, which describes moth behaviour in the presence of a pheromone plume and is used as a framework for such models. Currently, however, that theory includes only three components: upwind, zigzagging, and sideways casting behaviour. We test anemotaxis theory by analysing the data from a series of mark–release–recapture experiments where the wind direction was known and the insects were trapped using an irregular grid of pheromone traps. The trapping results provide evidence of a downwind component to the flight patterns of the released insects. This active or passive downwind dispersal is likely to be an appetitive behaviour, occurring prior to the elicitation of pheromone‐oriented flight patterns (pheromone anemotaxis). Given the potential for significant displacement during downwind dispersal, this component will have impact on final trap captures and should be considered when constructing moth dispersal models.  相似文献   

14.
The nymphal stages of Palaeozoic insects differ significantly in morphology from those of their modern counterparts. Morphological details for some previously reported species have recently been called into question. Palaeozoic insect nymphs are important, however – their study could provide key insights into the evolution of wings, and complete metamorphosis. Here we review past work on these topics and juvenile insects in the fossil record, and then present both novel and previously described nymphs, documented using new imaging methods. Our results demonstrate that some Carboniferous nymphs – those of Palaeodictyopteroidea – possessed movable wing pads and appear to have been able to perform simple flapping flight. It remains unclear whether this feature is ancestral for Pterygota or an autapomorphy of Palaeodictyopteroidea. Further characters of nymphal development which were probably in the ground pattern of Pterygota can be reconstructed. Wing development was very gradual (archimetaboly). Wing pads did not protrude from the tergum postero‐laterally as in most modern nymphs, but laterally, and had well‐developed venation. The modern orientation of wing pads and the delay of wing development into later developmental stages (condensation) appears to have evolved several times independently within Pterygota: in Ephemeroptera, Odonatoptera, Eumetabola, and probably several times within Polyneoptera. Selective pressure appears to have favoured a more pronounced metamorphosis between the last nymphal and adult stage, ultimately reducing exploitation competition between the two. We caution, however, that the results presented herein remain preliminary, and the reconstructed evolutionary scenario contains gaps and uncertainties. Additional comparative data need to be collected. The present study is thus seen as a starting point for this enterprise.  相似文献   

15.
Reproductive strategies of principal rain-pool midges, Chironomus imicola and Chironomus pulcher are investigated in field and laboratory. The two species are able to lay at least one full clutch without access to food in the adult stage. Since females are also capable of flying for extended periods without feeding, they carry out both adult functions (i.e. dispersal and reproduction), without taking energy from the terrestrial environment.We argue that independance of the terrestrial environment is adaptively appropriate to animals able to exploit a larval habitat rich in food and low in interspecific competition. However, there are costs to this strategy because freshwaters, and notably rain-pools, are unpredictable habitats inclined to dry up periodically. These species must, therefore, constantly colonise new pools by laying eggs. We show that adult females can resort to feeding and that if they do so the energy acquired goes to the production of further eggs with a consequent increase in colonizing ability.As a test of this hypothesis that there is a relationship between duration of habitat and the number of eggs layed, we have examined a third rain-pool dwelling chironomid, Polypedilum vanderplanki. This species is unique among insects in that larvae are able to survive desiccation of their tissues. For them there is thus not the same incentive to leave before the home pool dries. So, P. vanderplanki does not need to be a colonizer. Observations confirm this view since P. vanderplanki adult females, even when fed, lay no more than one clutch of eggs. Consequently, reproduction and feeding in the adult female are related to the way in which duration of the habitat is perceived. We suggest that, measured against P. vanderplanki, Chironomus species provide a useful model of the ideal freshwater animal.  相似文献   

16.
Body miniaturization in insects is predicted to result in decreased flight speed and therefore limited ability of these insects to fly upwind. Therefore, tiny insects are often regarded as relying on passive dispersal by winds. We tested this assumption in a wind tunnel by measuring the burst speed of Eretmocerus mundus (Mercet), a beneficial parasitoid wasp with body length <1 mm. Insects were filmed flying upwind towards a UV light source in a range of wind speed 0–0.5 m/s. The Insects flew towards the UV light in the absence and presence of wind but increased their flight speed in the presence of wind. They also changed flight direction to be directly upwind and maintained this body orientation even while drifted backwards relative to the ground by stronger winds. Field measurements showed that the average flight speed observed in the wind tunnel (0.3 m/s) is sufficient to allow flying between plants even when the wind speed above the vegetation was 3–5 folds higher. A simulation of the ability of the insects to control their flight trajectory towards a visual target (sticky traps) in winds show that the insects can manipulate their progress relative to the ground even when the wind speed exceeds their flight speed. The main factors determining the ability of the insects to reach the trap were trap diameter and the difference between insect flight speed and wind speed. The simulation also predicts the direction of arrival to the sticky target showing that many of the insects reach the target from the leeward side (i.e. by flight upwind). In light of these results, the notion that miniature insects passively disperse by winds is misleading because it disregards the ability of the insects to control their drift relative to the ground in winds that are faster than their flight speed.  相似文献   

17.
Butterflies have competing demands for flight ability depending on, for example, mating system, predation pressure, the localization of host plants and dispersal needs. The flight apparatus, however, is costly to manufacture and therefore trade-offs are expected since resources are limited and must be allocated between flight ability and other functions, such as reproduction. Trade-offs between flight and reproduction may be difficult to reveal since they interact with other factors and can be confounded by differences in resource consumption. Previous studies have shown that adults of the summer generation of Pieris napi have relatively larger thoraxes compared with the spring generation. To study whether difference in thorax size results in a trade-off between flight ability and reproduction among the two generations, we conducted a split-brood experiment under common garden conditions. Our results show that summer generation adults have a higher dispersal capacity measured as flight duration in five different temperatures. Reproductive output differed between the two developmental pathways; spring generation females had a significantly higher output of eggs compared with summer generation females. We suggest that this is a consequence of a resource-allocation trade-off made during pupal development implemented by different demands for flight between the spring and summer generations. The significance of this finding is discussed in relation to reproduction and mobility in butterflies.  相似文献   

18.
沙蟋Gryllus firmus是一种翅多型性的昆虫, 是研究种内迁飞和生殖调控的模式生物。本研究应用高效液相色谱仪(HPLC)、 气相色谱-质谱联用仪(GC-MS)对沙蟋长翅(有飞行能力)和短翅(无飞行能力)雌虫飞行肌内保幼激素(juvenile hormone, JH)和脂肪酸进行了定性定量分析。结果表明: 在温度28℃, 光周期16L∶8D条件下, 第5和第7日龄的沙蟋长翅雌虫飞行肌中JH的滴度具有明显的昼夜节律, 在飞行前(即关灯前)4 h, JH的滴度分别由386.52±68.40 ng/g和630.36±37.26 ng/g增加至1 327.53±277.98 ng/g和1 685.77±143.95 ng/g, 与短翅型SW相比分别增加了约3.4倍与2.7倍 (P<0.05)。而相同日龄的短翅雌虫及第1日龄的两型雌虫均无明显的节律变化。进一步在第5和7日龄的长翅雌虫中发现了一个16C的脂肪酸--14-甲基十五烷酸, 也具有节律变化且与JH节律出现的时间相吻合, 而在无飞行能力的沙蟋中没有发现这种现象。实验还证明JH滴度的增加和节律不是由飞行肌的重量或者飞行肌重量比的变化所致。这些发现有助于探讨和了解保幼激素对飞行调控的内在机理。  相似文献   

19.
Movement uses resources that may otherwise be allocated to somatic maintenance or reproduction. How does increased energy expenditure affect resource allocation? Using the butterfly Speyeria mormonia, we tested whether experimentally increased flight affects fecundity, lifespan or flight capacity. We measured body mass (storage), resting metabolic rate and lifespan (repair and maintenance), flight metabolic rate (flight capacity), egg number and composition (reproduction), and food intake across the adult lifespan. The flight treatment did not affect body mass or lifespan. Food intake increased sufficiently to offset the increased energy expenditure. Total egg number did not change, but flown females had higher early-life fecundity and higher egg dry mass than control females. Egg dry mass decreased with age in both treatments. Egg protein, triglyceride or glycogen content did not change with flight or age, but some components tracked egg dry mass. Flight elevated resting metabolic rate, indicating increased maintenance costs. Flight metabolism decreased with age, with a steeper slope for flown females. This may reflect accelerated metabolic senescence from detrimental effects of flight. These effects of a drawdown of nutrients via flight contrast with studies restricting adult nutrient input. There, fecundity was reduced, but flight capacity and lifespan were unchanged. The current study showed that when food resources were abundant, wing-monomorphic butterflies living in a continuous meadow landscape resisted flight-induced stress, exhibiting no evidence of a flight-fecundity or flight-longevity trade-off. Instead, flight changed the dynamics of energy use and reproduction as butterflies adopted a faster lifestyle in early life. High investment in early reproduction may have positive fitness effects in the wild, as long as food is available. Our results help to predict the effect of stressful conditions on the life history of insects living in a changing world.  相似文献   

20.
P. Boda  Z. Csabai 《Hydrobiologia》2013,703(1):133-147
Changes of seasonal dispersal flight were investigated based on a wide spectrum of aquatic Heteroptera and Coleoptera species. We hypothesized that species or groups of species can be characterized by various seasonal patterns of dispersal flight. Dispersal activity was studied in a lowland marsh located in NE Hungary during a 30-week long monitoring period. Insects were attracted to highly polarising horizontal shiny black plastic sheets laid onto the ground. There are no periods of the year (from April till October) when insects are not rising into the air, but species have various seasonal flight activity. Dispersal flight activity of 45 species could be described. These activities assessed based on a seasonal approach and proportional classification. Based on these results, three seasonal patterns and twelve sub-patterns were defined. Comparing the observed patterns with previously reported dispersal activity data, we argue that observations found in the literature fit well with patterns defined here, therefore, to assess the dispersal behaviour, a unified scheme can be established. Owing to this unified scheme, the seasonal dispersal activity of primary aquatic insects observed in different studies becomes highly comparable. This scheme can be a useful tool for assessing dispersal behaviour of insects across other geographic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号