首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着生物技术的飞速发展,作为食品生物工程的主要组成部分,食品发酵工程技术不断升级,在传统发酵食品的菌种、发酵过程、产品品质得到改善的同时,生物制造的功能食品组分、未来食品等新型产品也应运而生。首先概述了由生物技术和信息技术的进步带来的食品发酵研究手段与生产方式的多层面变革,并重点阐释了利用食品合成生物学设计构建细胞工厂的思路和方法,以及食品生物工程在微生物分析、过程工程和分离工程方面的智能化进程。其次,介绍了现代食品生物工程技术在改善传统发酵食品品质及安全性、生产功能食品组分、添加剂和酶制剂、创制未来食品和开发新型益生食品方面的应用进展。最后,对全球和我国食品发酵产业面临的挑战和未来发展趋势进行了总结和展望,以期为食品发酵的技术革新和工业化应用提供参考。  相似文献   

2.
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.  相似文献   

3.
The role of herbs and spices in cancer prevention   总被引:2,自引:0,他引:2  
Historically, herbs and spices have enjoyed a rich tradition of use for their flavor enhancement characteristics and for their medicinal properties. The rising prevalence of chronic diseases worldwide and the corresponding rise in health care costs is propelling interest among researchers and the public for multiple health benefits related to these food items, including a reduction in cancer risk and modification of tumor behavior. A growing body of epidemiological and preclinical evidence points to culinary herbs and spices as minor dietary constituents with multiple anticancer characteristics. This review focuses on the antimicrobial, antioxidant, and antitumorigenic properties of herbs and spices; their ability to influence carcinogen bioactivation; and likely anticancer contributions. While culinary herbs and spices present intriguing possibilities for health promotion, more complete information is needed about the actual exposures to dietary components that are needed to bring about a response and the molecular target(s) for specific herbs and spices. Only after this information is obtained will it be possible to define appropriate intervention strategies to achieve maximum benefits from herbs and spices without eliciting ill consequences.  相似文献   

4.
《Biotechnology advances》2019,37(8):107419
Microalgae are considered promising functional food ingredients due to their balanced composition, containing multiple nutritional and health-beneficial components. However, their functionality in food products is not limited to health aspects, since microalgae can also play a structuring role in food, for instance as a texturizing ingredient. Photoautotrophic microalgae are actually rich in structural biopolymers such as proteins, storage polysaccharides, and cell wall related polysaccharides, and their presence might possibly alter the rheological properties of the enriched food product. A first approach to benefit from these structural biopolymers consists of isolating the cell wall related polysaccharides for use as food hydrocolloids. The potential of extracted cell wall polysaccharides as food hydrocolloids has only been shown for a few microalgae species, mainly due to an enormous diversity in molecular structure and composition. Nevertheless, with intrinsic viscosities comparable or higher than those of commercial thickening agents, extracellular polysaccharides of red microalgae and cyanobacteria could be a promising source of novel food hydrocolloids. A more sustainable approach would be to incorporate the whole microalgal biomass into food products, to combine health benefits with potential structuring benefits, i.e. providing desired rheological properties of the enriched food product. If microalgal biomass would act as a thickening agent, this would actually reduce the need for additional texturizing ingredients. Even though only limitedly studied so far, food processing operations have been proven successful in establishing desired microstructural and rheological properties. In fact, the use of cell disruption techniques allows the release of intracellular compounds, which become available to create strong particle aggregates resulting in an improved viscosity and network structure. Food processing operations might not only be favorable in terms of rheological properties, but also for enhancing the bioaccessibility of several bioactive compounds. However, this research area is only very scarcely explored, and there is a demand for more standardized research studies to draw conclusions on the effect of processing on the nutritional quality of food products enriched with microalgae. Even though considered as promising food ingredients, some major scientific challenges have been pointed out throughout this review paper for the successful design of microalgal based food products.  相似文献   

5.
Consumers’ demand is increasing for safe foods without impairing the phytochemical and sensory quality. In turn, it has increased research interest in the exploration of innovative food processing technologies. Cold plasma technology is getting popularity now days owing to its high efficacy in decontamination of microbes in fruit and fruit-based products. As a on-thermal approach, plasma processing maintains the quality of fruits and minimizes the thermal effects on nutritional properties. Cold plasma is also exploited for inactivating enzymes and degrading pesticides as both are directly related with quality loss and presently are most important concerns in fresh produce industry. The present review covers the influence of cold plasma technology on reducing microbial risks and enhancing the quality attributes in fruits.  相似文献   

6.
7.
In recent years, like others in Europe, the Slovenian government has introduced national and European quality schemes and launched a campaign to inform consumers and boost demand for local products. Very few studies consider consumers' hedonic liking of different food products labeled with Protected Designation of Origin (PDO)/Protected Geographical Indication (PGI) indications. This study therefore aims to fill this research gap and identify whether information affects the hedonic liking of various typical Slovenian PDO/PGI‐labeled products compared to their alternative conventional food products, whether Slovenian consumers like different typical Slovenian PDO/PGI‐labeled food products relative to their conventional food products, and which food products they sensorically prefer. The study findings show consumer hedonic liking is identical for all PDO/PGI‐labeled regional products, yet their sensory preferences reveal some significant differences between the analyzed products by age, gender, and education. Accordingly, studies should employ different sensory analyses for different food products and not generalized consumer hedonic liking/preference based on just one food product.

Practical applications

The finding that consumers do not hold hedonic preferences for either PDO/PGI‐labeled or conventional products when both informed and blind has significant implications for the Slovenian government, the marketers of labeled products and consumer policy aiming to promote better labeled products. For transition countries like Slovenia that have recently introduced food products labeling meeting EU standard but have a relatively small food industry based on local ingredients, traditional recipes, and production methods, our findings reveal the need to extend and intensify promotion and communication activities that highlight the guaranteed quality and use of local ingredients to boost consumers' preferences for PDO/PGI‐labeled products like cheese, ham, and honey.  相似文献   

8.
We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg−1. Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments.  相似文献   

9.
Abstract:  Several studies have shown that the mainly granivorous carabid beetles, e.g. Amara spp., include animal food in their diet to a considerable extent. We therefore hypothesized that the performance of these beetles would be enhanced by dietary mixing including both seeds and animal food. In order to test this, we conducted laboratory feeding experiments with adults and larvae of Amara similata . Both adults and larvae were subjected to different diet treatments including: seeds, houseflies, grasshoppers, earthworms, slugs and snails in pure and mixed diets. Larval survival, development time, pupal and teneral weights were used as indicators of food quality for the larvae. For the adult beetles, mass change was used as an indicator of food quality. We found seeds to be high-quality food, while all pure animal diets were of low quality for both adults and larvae. Animal foods added to the seed diet had both positive and negative effects. A mixed diet of all foods enhanced the mass gain of adults compared with the seed diet, but reduced larval performance dramatically. Earthworms and grasshoppers added to seeds increased the pupal and teneral weights, while reduced larval survival. Thus, A. similata is omnivorous with a mainly granivorous feeding habit. It may gain benefits on some fitness parameters and incur costs on others from preying or scavenging on animal food. Therefore, the overall fitness consequences of a mixed seed-animal diet are uncertain.  相似文献   

10.
受到人口增长过快、社会经济发展水平不平衡、人口老龄化和不健康饮食方式等影响,人类面临着食品和营养缺乏、部分人群中营养相关疾病高发等问题。同时,社会低碳发展的需求呼唤一种可持续的食物供给模式。因此,既能满足消费者口感和营养需求,又是绿色可持续食物供给模式的技术,例如功能糖、人造肉等未来食品技术,受到了广泛的关注。近年,新兴的生物制造技术及产品得到了迅猛发展,将会支撑形成绿色、低碳的未来食品产业,引发传统生产模式的深刻变革,是新兴生物经济的重大战略发展方向。本文聚焦于未来食品——功能糖、微生物蛋白及人造肉等关键辅配料的生物制造技术研究,追踪其在细胞工厂构建、工业环境下菌种测试与过程优化和衍生产品开发等研究的最新进展,展望未来的发展趋势,旨在为微生物制造未来食品的产业发展提供指导。  相似文献   

11.
Nutraceuticals: facts and fiction   总被引:1,自引:0,他引:1  
Epidemiological studies show a link between the consumption of plant-derived foods and a range of health benefits. These benefits have been associated, at least partially, to some of the phytochemical constituents, and, in particular, to polyphenols. In the last few years, nutraceuticals have appeared in the market. These are pharmaceutical forms (pills, powders, capsules, vials, etc.) containing food bioactive compounds as active principles. The bioactive phytochemicals have become a very significant source for nutraceutical ingredients. Scientific research supports the biological activity of many of these food phytochemicals, but the health claims attributed to the final marketed nutraceutical products have often little or doubtful scientific foundation. This is due to the fact that a lot of the scientific evidence is derived from animal testing and in vitro assays, whereas human clinical trials are scarce and inconclusive. Some key issues such as bioavailability, metabolism, dose/response and toxicity of these food bioactive compounds or the nutraceuticals themselves have not been well established yet. Amongst the phytochemicals, several groups of polyphenols (anthocyanins, proanthocyanidins, flavanones, isoflavones, resveratrol and ellagic acid) are currently used in the nutraceutical industry. In this report, we have reviewed the most recent scientific knowledge on the bioavailability and biological activity of these polyphenols ('fact'), as well as the health claims (which are not always supported by scientific studies) ascribed to the polyphenols-containing nutraceuticals ('fiction'). The in vitro antioxidant capacity, often used as a claim, can be irrelevant in terms of in vivo antioxidant effects. Bioavailability, metabolism, and tissue distribution of these polyphenols in humans are key factors that need to be clearly established in association to the biological effects of these polyphenols-containing nutraceuticals. The future trends of phytochemistry research regarding nutraceuticals are discussed.  相似文献   

12.
Genetic engineering of food is the science which involves deliberate modification of the genetic material of plants or animals. It is an old agricultural practice carried on by farmers since early historical times, but recently it has been improved by technology. Many foods consumed today are either genetically modified (GM) whole foods, or contain ingredients derived from gene modification technology. Billions of dollars in U.S. food exports are realized from sales of GM seeds and crops. Despite the potential benefits of genetic engineering of foods, the technology is surrounded by controversy. Critics of GM technology include consumer and health groups, grain importers from European Union (EU) countries, organic farmers, environmentalists, concerned scientists, ethicists, religious rights groups, food advocacy groups, some politicians and trade protectionists. Some of the specific fears expressed by opponents of GM technology include alteration in nutritional quality of foods, potential toxicity, possible antibiotic resistance from GM crops, potential allergenicity and carcinogenicity from consuming GM foods. In addition, some more general concerns include environmental pollution, unintentional gene transfer to wild plants, possible creation of new viruses and toxins, limited access to seeds due to patenting of GM food plants, threat to crop genetic diversity, religious, cultural and ethical concerns, as well as fear of the unknown. Supporters of GM technology include private industries, research scientists, some consumers, U.S. farmers and regulatory agencies. Benefits presented by proponents of GM technology include improvement in fruit and vegetable shelf-life and organoleptic quality, improved nutritional quality and health benefits in foods, improved protein and carbohydrate content of foods, improved fat quality, improved quality and quantity of meat, milk and livestock. Other potential benefits are: the use of GM livestock to grow organs for transplant into humans, increased crop yield, improvement in agriculture through breeding insect, pest, disease, and weather resistant crops and herbicide tolerant crops, use of GM plants as bio-factories to yield raw materials for industrial uses, use of GM organisms in drug manufacture, in recycling and/or removal of toxic industrial wastes. The potential risks and benefits of the new technology to man and the environment are reviewed. Ways of minimizing potential risks and maximizing the benefits of GM foods are suggested. Because the benefits of GM foods apparently far outweigh the risks, regulatory agencies and industries involved in GM food business should increase public awareness in this technology to enhance worldwide acceptability of GM foods. This can be achieved through openness, education, and research.  相似文献   

13.
The benefits of using lactic acid bacteria in the food chain, both through direct consumption and production of ingredients, are increasingly recognised by the food industry and consumers alike. The regulatory environment surrounding these products is diverse, covering foods and food ingredients, processing aids, feed additives and dietary supplements. On a global basis, there are different approaches taken by the various regulatory authorities. While in Europe, the national legislation is gradually being harmonised, predominantly through the Novel Foods Regulation, there is still a wide disparity between the stringency of regulation of microbial products fed to animals and the comparatively relaxed approach to non-novel microbial products intended for human consumption. In the United States, the onus is on self-regulation of the manufacturer, with the Generally Recognised As Safe (GRAS) and Dietary Supplement Health Education Act (DSHEA) notification schemes encouraging industry to be more open about the ingredients they market. In Japan, the Foods for Special Health Use system continues to gain recognition as more products are approved, and is a potential model for other countries in regulating functional foods. Despite the different approaches to regulating these products, safety of microorganisms such as lactic acid bacteria in the food chain is paramount in all countries. This paper discusses the regulatory requirements of microbial products, predominantly lactic acid bacteria within the global markets, focusing mainly on the developments in Europe.  相似文献   

14.
Food nanotechnology involves the utilization of nanocarrier systems to stabilize the bioactive materials against a range of environmental and chemical changes as well as to improve their bioavailability. Nanoliposome technology presents exciting opportunities for food technologists in areas such as encapsulation and controlled release of food materials, as well as the enhanced bioavailability, stability, and shelf-life of sensitive ingredients. Liposomes and nanoliposomes have been used in the food industry to deliver flavors and nutrients and, more recently, have been investigated for their ability to incorporate antimicrobials that could aid in the protection of food products against microbial contamination. In this paper, the main physicochemical properties of liposomes and nanoliposomes are described and some of the industrially applicable methods for their manufacture are reviewed. A summary of the application of nanoliposomes as carrier vehicles of nutrients, nutraceuticals, enzymes, food additives, and food antimicrobials is also presented.  相似文献   

15.
16.
Legume seeds are employed as a protein source for animal and human nutrition not only for their nutritional value (high in protein, lipids and dietary fibre), but also their adaptability to marginal soils and climates. Human consumption of legumes has been increased in recent years, being regarded as beneficial food ingredients. Legume seeds contain a great number of compounds which qualify as bioactive compounds with significant potentials benefits to human health. These compounds vary considerably in their biochemistry and they can be proteins, glycosides, tannins, saponins, alkaloids, etc. Hence, methods for their extraction, determination and quantification are specific of each compound. They do not appear equally distributed in all legumes, and their physiological effects are diverse. Some of these compounds are important in plant defence mechanisms against predators or environmental conditions. Others are reserve compounds, accumulated in seeds as energy stores in readiness for germination. Processing generally improves the nutrient profile of legume seed by increasing in vitro digestibility of proteins and carbohydrates and at the same time there are reductions in some antinutritional compounds. Most antinutritional factors are heat-labile, such as protease inhibitors and lectins, so thermal treatment would remove any potential negative effects from consumption. On the other hand tannins, saponins and phytic acid are heat stable but can be reduced by dehulling, soaking, germination and/or fermentation. New directions in bioactive compounds research in the last decade have led to major developments in our understanding of their role in nutrition. The scientific interest in these compounds is now also turning to studies of their possible useful and beneficial applications as gut, metabolic and hormonal regulators and as probiotic/prebiotic agents.  相似文献   

17.
Nowadays bioactive compounds have gained great attention in food and drug industries owing to their health aspects as well as antimicrobial and antioxidant attributes. Nevertheless, their bioavailability, bioactivity, and stability can be affected in different conditions and during storage. In addition, some bioactive compounds have undesirable flavor that restrict their application especially at high dosage in food products. Therefore, food industry needs to find novel techniques to overcome these problems. Microencapsulation is a technique, which can fulfill the mentioned requirements. Also, there are many wall materials for use in encapsulation procedure such as proteins, carbohydrates, lipids, and various kinds of polymers. The utilization of food-grade and safe carriers have attracted great interest for encapsulation of food ingredients. Yeast cells are known as a novel carrier for microencapsulation of bioactive compounds with benefits such as controlled release, protection of core substances without a significant effect on sensory properties of food products. Saccharomyces cerevisiae was abundantly used as a suitable carrier for food ingredients. Whole cells as well as cell particles like cell wall and plasma membrane can act as a wall material in encapsulation process. Compared to other wall materials, yeast cells are biodegradable, have better protection for bioactive compounds and the process of microencapsulation by them is relatively simple. The encapsulation efficiency can be improved by applying some pretreatments of yeast cells. In this article, the potential application of yeast cells as an encapsulating material for encapsulation of bioactive compounds is reviewed.  相似文献   

18.
Health benefits of marine foods and ingredients   总被引:2,自引:0,他引:2  
The health benefits of seafood consumption have primarily been associated with protective effects against cardiovascular diseases (CVD). However, intake of seafood has also been associated with improved foetal and infant development, as well as several other diseases and medical conditions. The health promoting effects have chiefly been attributed to the long-chain n-3 polyunsaturated fatty acids (n-3 PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In addition, the general fatty acid profile is considered favourable. On the other hand, recent and emerging research on seafood proteins and other seafood derived components suggest that these nutritional components contribute to the health effects. In this paper we review the nutritional characteristics and health benefits of marine foods and ingredients, and discuss some current and future trends in marine food production.  相似文献   

19.
This review focuses on four new product categories of food supplements: pre-workout, fat burner/thermogenic, brain/cognitive booster, and hormone/testosterone booster. Many food supplements have been shown to be contaminated with unauthorized substances. In some cases, the ingredients in the new categories of dietary supplements were medicinal products or new synthetic compounds added without performing clinical trials. Some of the new ingredients in dietary supplements are plant materials that are registered in the pharmacopoeia as herbal medicines. In other cases, dietary supplements may contain plant materials that have no history of human use and are often used as materials to ‘camouflage’ stimulants. In the European Union, new ingredients of dietary supplements, according to European Food Safety Authority or unauthorized novel food. Furthermore, selected ingredients in dietary supplements may be prohibited in sports and are recognized as doping agents by World Anti-Doping Agency.  相似文献   

20.
Plants are the world’s most consumed goods. They are of high economic value and bring many health benefits. In most countries in Africa, the supply and quality of food will rise to meet the growing population’s increasing demand. Genomics and other biotechnology tools offer the opportunity to improve subsistence crops and medicinal herbs in the continent. Significant advances have been made in plant genomics, which have enhanced our knowledge of the molecular processes underlying both plant quality and yield. The sequencing of complex genomes of African plant species, facilitated by the continuously evolving next-generation sequencing technologies and advanced bioinformatics approaches, has provided new opportunities for crop improvement. This review summarizes the achievements of genome sequencing projects of endemic African plants in the last two decades. We also present perspectives and challenges for future plant genomic studies that will accelerate important plant breeding programs for African communities. These challenges include a lack of basic facilities, a lack of sequencing and bioinformatics facilities, and a lack of skills to design genomics studies. However, it is imperative to state that African countries have become key players in the plant genome revolution and genome derived-biotechnology. Therefore, African governments should invest in public plant genomics research and applications, establish bioinformatics platforms and training programs, and stimulate university and industry partnerships to fully deploy plant genomics, particularly in the fields of agriculture and medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号