首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO) activities and polyamines (PAs), proline contents in water hyacinth leaves under Mercury (Hg) stress was investigated after 6 days treatment. The results showed that free putrescine (Put) content increased, the contents of free spermidine (Spd) and spermine (Spm) and the (Spd + Spm)/Put ratio in water hyacinth leaves decreased significantly with the increase of the Hg concentrations. Hg stress also disturbed the activities of ADC, ODC and PAO and caused changes on proline content. Compared to the Hg-treatment only, exogenous Spd (0.1 mM) significantly reduced the accumulation of free Put, increased the contents of free Spd and Spm and the ratio of (Spd + Spm)/Put in water hyacinth leaves. Furthermore, exogenous Spd enhanced the activities of ADC, ODC and PAO and significantly increased proline content. The PS-conjugated PAs and PIS-bound PAs changed in the same trend as free PAs. These results suggest that exogenous Spd can alleviate the metabolic disturbance of polyamines caused by Hg in water hyacinth leaves.  相似文献   

2.
120mmol·L^-1NaCl胁迫30d,耐盐性强的‘金丝小枣’叶片细胞质膜、液泡膜共价结合态腐胺(Put)、亚精胺(Spd)、精胺(Spm)含量及多胺(PAs)总水平与对照无显著性差异,但耐盐性弱的‘冬枣’叶片质膜共价结合态Put、Spd、Spm含量和PAs总水平及液泡膜Spd含量均显著降低;‘金丝小枣’叶片类囊体膜共价结合态Put含量、PAs总水平较对照显著降低,‘冬枣’则是Put、Spd、Spm含量及PAs总水平均显著降低。盐胁迫下,‘金丝小枣’叶片细胞质膜、液泡膜、类囊体膜非共价结合态Put、Spd、Spm含量及PAs总水平下降,但其中仅类囊体膜Spd含量显著低于对照,而‘冬枣’的3种膜上非共价结合态的这些多胺及其总水平均显著低于对照。与对照相比,盐胁迫下耐盐性不同的2个枣品种,叶片细胞质膜、液泡膜和类囊体膜H+-ATP酶活性均降低,但降低幅度因枣品种和生物膜种类不同而异,且H+-ATP酶活性与相应膜结合态多胺水平存在极紧密的正相关关系。结果表明,膜结合态多胺参与枣品种耐盐性的表达,调节盐胁迫下枣叶细胞中溶质的跨膜运输。  相似文献   

3.
Exogenous polyamines enhance copper tolerance of Nymphoides peltatum   总被引:2,自引:0,他引:2  
Wang X  Shi G  Xu Q  Hu J 《Journal of plant physiology》2007,164(8):1062-1070
The protective effects of polyamines (PAs) against copper (Cu) toxicity were investigated in the leaves of Nymphoides peltatum. Cu treatment increased the putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put ratio in leaves. Exogenous application of Spd or Spm markedly reversed these Cu-induced effects for all three PAs and partially restored the (Spd+Spm)/Put ratio in leaves. It also significantly enhanced the level of proline, retarded the loss of soluble protein, decreased the rate of O2*- generation and H2O2 content, and prevented Cu-induced lipid peroxidation. Furthermore, exogenous Spd and Spm reduced the accumulation of Cu and effectively maintained the balance of nutrient elements in plant leaves under Cu stress. These results suggest that exogenous application of Spd or Spm can enhance the tolerance of N. peltatum to Cu by increasing the levels of endogenous Spd and Spm as well as the (Spd+Spm)/Put ratio.  相似文献   

4.
氯化钠胁迫对嫁接黄瓜叶片多胺含量的影响   总被引:3,自引:0,他引:3  
以日本耐盐品种‘帝王新土佐’南瓜为砧木,以’新泰密刺’黄瓜为接穗,在100 mmol·L-1 NaCl胁迫下,对黄瓜嫁接和自根植株不同时期叶片中不同形态多胺含量的变化进行了研究.结果表明:NaCl胁迫下黄瓜嫁接植株游离态腐胺(Put)含量在胁迫2 d时与自根植株无显著差异,其余时间均显著高于自根植株;游离态亚精胺(Spd)和游离态精胺(Spm)含量在整个胁迫期间均显著高于自根植株;游离态多胺总量(PAs)在胁迫第4天出现峰值;嫁接植株游离态Put/PAs值在胁迫4 d时与自根植株无显著差异,其余胁迫时间均显著低于自根植株,而(Spd+Spm)/Put值在整个胁迫期间均显著高于自根植株;嫁接植株结合态和束缚态Put、Spd和Spm含量在整个胁迫期间均显著高于自根植株,结合态和束缚态PAs在胁迫第6天出现峰值;结合态多胺的Put/PAs值和(Spd+Spm)/Put值变化趋势与游离态多胺一致;嫁接植株束缚态Put/PAs值在胁迫6 d时与自根植株无显著差异,其余时间均显著低于自根植株,而(Spd+Spm)/Put值在整个胁迫期间均显著高于自根植株.表明黄瓜嫁接植株表现出较强的耐盐特征.  相似文献   

5.
以中国南瓜杂交种‘360.3×112.2’和黑籽南瓜为试验材料,在营养液栽培条件下研究了NaCl胁迫对两种南瓜植株生长、根系活性氧水平和游离态多胺含量的影响.结果表明,NaCl胁迫10 d后,与对照相比,两种南瓜植株生长都受到明显抑制,但中国南瓜杂交种比黑籽南瓜植株的耐盐性强.NaCl胁迫使南瓜根系O2-·产生速率和H2O2含量提高,且黑籽南瓜的O2-·产生速率和H2O2含量高于中国南瓜杂交种.两种南瓜根系中腐胺(Put)、亚精胺(Spd)、精胺(Spm)和多胺(PAs)含量及Put/PAs高于对照,并呈现先升后降的趋势;根系中(Spd+Spm)/Put低于对照,呈现先降后升的趋势.中国南瓜杂交种根系中Put含量和Put/PAs低于黑籽南瓜,而Spd、Spm含量和(Spd+Spm)/Put高于黑籽南瓜.表明两种南瓜根系中多胺含量的升高对减少或清除组织中的活性氧有积极作用,Put向Spd、Spm的转化有利于增强植株的耐盐性;中国南瓜杂交种‘360.3×112.2’的耐盐性高于黑籽南瓜与其根系中Put/PAs较低、(Spd+Spm)/Put和PAs含量较高,使其清除活性氧能力较强有关.  相似文献   

6.
多胺与香蕉抗寒性的关系的研究   总被引:17,自引:0,他引:17  
人工气候箱中模拟寒潮对香蕉苗造成低温伤害,低温胁迫前用1 mmol·L-1多胺(PAs)和D-精氨酸(D-Arg)喷洒香蕉叶片。结果表明,低温胁迫后香蕉叶片内源腐胺(Put)含量下降,亚精胺(Spd)含量明显增多,精胺(Spm)比较稳定;D-Arg处理的内源多胺总量明显降低。外源Spd和Spm可以提高受冷胁迫的香蕉叶片中过氧化物酶(POD)活性、降低电解质渗漏率、增加可溶性糖和脯氨酸的含量,有助于提高香蕉的抗寒力;Put对香蕉抗寒力没有明显影响;D-Arg则有不利作用。  相似文献   

7.
The effect of spermine (Spm) treatment on the content of polyamines (PAs) and activities of antioxidant enzymes in the roots and leaves of Thellungiella salsuginea (Pall.) O.E. Schulz plants grown under optimal conditions were studied. The genes encoding three forms of ascorbate peroxidase (APX; APX1, APX2, and APX4) and genes of key enzymes of proline metabolism (Pro, P5CS1, 1P5CD) were identified, and their expression intensity was measured. Six-day-old plants were treated with Spm (1 and 2 mM) and with the inhibitor of polyamine oxidase (PAO) activity, N,N-(2-hydroxyethyl)hydrazine (HEH, 1 and 2 mM) separately or in combination by adding these compounds to nutrient medium. Roots and leaves responded differently to Spm treatment. In the leaves, the content of PAs reduced due to a decreased in the spermidine (Spd) content, whereas in the roots the total pool of PAs increased due to putrescine (Put) and Spd accumulation. Treatment with Spm activated PAO in the roots but not in the leaves; HEH removed this increase, but the intercellular Spm concentration was not substantially changed. It was suggested that treatment with Spm suppressed the biosynthesis of intracellular Spm and, on the other hand, stimulated the reverse conversion of Spm into Spd and further into Put due to the activation of one of the PAO isoforms. Plant treatment with Spm was not accompanied by a noticeable activation enzymes degrading hydrogen peroxide in the roots: APX, (except of peroxidase II), and catalase. However, the activity of Cu/Zn-SOD doubled and the activity of Mn-SOD reduced. In the leaves, slight activation of peroxidases I and III, the inhibition of Cu/Zn- and Mn-SOD, differential changes in the time-coursed of gene expression of three APX isoforms, and activated gene expression of key enzymes of Pro metabolism were observed. At the same time, the level of MDA did not increase either in the leaves or in the roots. This indicates that treatment of Th. salsuginea plants with Spm under optimal growing conditions did not enhance ROS generation and did not manifest prooxidant properties.  相似文献   

8.
Seedlings of grass pea (Lathyrus sativus L.) were treated with polyethylene glycol (PEG), in addition with putrescine (Put) and α-difluoromethylarginine (DFMA) in order to study the relation between polyamine metabolism and accumulation of β-N-oxalyl-L-α, β-diaminopropionic acid (ODAP) under water stress. The results indicated that Put, spermidine (Spd) and spermine (Spm) contents of leaves gradually increased along with the extension of PEG-treatment time. Especially, the increase in Spm contents was significant together with a gradual increase of ODAP contents. Put and Spd contents of leaves markedly increased along with the extension of PEG+Put treatment time. There was little effect on Spm contents and ODAP contents in leaves with PEG+Put treatment. The accumulation of Put, Spd, Spm and ODAP in leaves was inhibited by PEG+DFMA treatment. The inhibition of DFMA for Put and Spd biosynthesis was partially overcome by adding exogenous Put, but little effect for the inhibition of DFMA on Spm biosynthesis by adding exogenous Put. The accumulation of ODAP was inhibited with PEG+DFMA+Put treatment in leaves. This indicated that there was a relationship between the increase of Spm contents and the accumulation of ODAP in leaves under water stress.  相似文献   

9.
研究了不同浓度NaCl胁迫下,香根草(Vetiteria zizanioides)根、叶中的游离态、结合态、束缚态多胺(PAs)[包括腐胺(Put),尸胺(Cad),亚精胺(Sod)和精胺(Spm)]含量的变化。在中度盐胁迫(100,200mmol L^-1NaCl)9天时,香根草基本能够正常生长,但在重度盐胁迫(300mmol L^-1NaCl)下,其生长受到严重抑制。在上述3个不同浓度的NaCl胁迫下,香根草根、叶中游离态Put,Cad,spd,Stma和总的游离态PAs含量明显下降,在高盐浓度下下降幅更大;结合态Put,Cad,Sod,Spm和总的结合态PAs含量显著上升,但在重度盐胁迫下升幅较小或与对照相当;束缚态Put,Cad和总的束缚态PAs含量均减少,而束缚态Spd和Spm含量在叶中是下降的,在根中则增加,且在中度盐胁迫下更明显。对根和叶片而言,除游离态(Spd+Spm),Put比值在重度盐胁迫下较对照显著下降外,其它游离态、结合态、束缚态和总的(Spd+Spm)/Put比值在不同盐胁迫下均上升,在中度盐胁迫下更明显。这表明,维持多胺总量的稳态和较高的(Spd+Spm)/Put比值是香根草适应中度盐胁迫的一个重要机制。  相似文献   

10.
We studied the effects of chloride salinity (300 and 500 mM NaCl) on the content of free polyamines (PAs) from putrescine (Put) family in Mesembryanthemum crystallinum L. leaves and roots. The contents of Put and spermidine (Spd) in leaves increased temporarily, achieving the highest values on the third day of salinity treatment; thereafter (by days 7–14), they dropped sharply. The content of spermine (Spm) increased gradually, and its high level was maintained until the end of experiment. The dynamics of Spm accumulation in leaves under salinity conditions resembled that of phosphoenolpyruvate carboxylase (PEPC), a key enzyme of the water-saving CAM pathway of photosynthesis. This indicates indirectly the involvement of Spm in the common ice plant adaptation to salinity. A decrease in the molar ratios of Spd to Spm in the leaves under salinity conditions could point to the acceleration of Spm biosynthesis (accumulation) during plant adaptation, whereas the levels of Spm precursors, Put and Spd, did not increase. This phenomenon could be explained by an accelerated conversion of Spd into Spm, an active liberation of free Spm from its conjugates, or changes in the rates of studied PA biosynthesis and degradation under salinity. At the same time, the intracellular concentration of ethylene rose under these conditions. It was supposed and then demonstrated, that the pathway of ethylene biosynthesis and that of the synthesis of Put family PAs compete under severe salinity conditions. This competition might be based on the disturbances in sulfur metabolism and a decrease in the methionine content, an immediate precursor of S-adenosyl-L-methionine.  相似文献   

11.
Interrelationship among abscisic acid (ABA) content, accumulation of free polyamines and biosynthesis of beta-N-oxalyl-l-alpha,beta-diaminopropionic acid (ODAP) was studied in grass pea (Lathyrus sativus L.) seedlings under drought stress induced by 10% polyethylene glycol (PEG6000). Increase of ABA content occurred prior to that of ODAP and polyamine contents, and was found significantly positive correlation between ABA content and ODAP content. Addition of exogenous ABA increased ODAP content in leaves. On the other hand, pretreatment with alpha-difluoromethylarginine (DFMA), a polyamine biosynthesis inhibitor, significantly suppressed the accumulation of free putrescine (Put), free spermidine (Spd) and free spermine (Spm), which in turn inhibited biosynthesis of ODAP in well-watered leaves. Meanwhile, addition of exogenous Put alleviated DFMA-induced inhibition on the biosynthesis of Put and Spd, but did not affect the biosynthesis of Spm and ODAP in well-watered leaves. Same result was also achieved in drought-stressed leaves. Increasing accumulation of ODAP was significantly correlated with increasing Spm content (R=0.7957**) but not with that of Spd and Put. Therefore, it can be argued that ABA stimulated the biosynthesis of ODAP simultaneously with increasing the level of free Spm under drought stress condition.  相似文献   

12.
Polyamines and ethylene in the removal of embryonal dormancy in apple seeds   总被引:2,自引:0,他引:2  
Putrescine (Put), spermidine (Spd) and spermine (Spm) were found in seeds of apple ( Malus domestica Borkh. cv. Antonovka), in amounts that increased in the order given. The levels slowly decreased during 30 days of stratification. Exogenous polyamines (PAs) affected germination of isolated embryos in a way dependent on the type of polyamine, its concentration, and the state of the embryo dormancy. The effect of Put and Spd on germination was stimulatory, while that of Spm was inhibitory. Stimulation of germination was also observed when embryos were treated with arginine, ornithine and methionine. Canavanine inhibited germination, and this effect was reversed by arginine or Put. Ethephon, aminooxyacetic acid (AOA) and aminoethoxyvinylglycine (AVG) present during seed stratification had no effect on the levels of endogenous PAs. Put and Spd did not change ethylene production, neither during seed stratification nor during embryo germination, whereas Spm reduced ethylene evolution. The data suggest that Spm plays a role in the maintenance of dormancy by preventing ethylene production, while Put and Spd participate in dormancy removal, independently of ethylene.  相似文献   

13.
采用1/2 Hoagland营养液培养,研究了低氧胁迫下24-表油菜素内酯(EBR)对黄瓜幼苗叶片光合特性及多胺含量的影响.结果表明:低氧胁迫下黄瓜幼苗的净光合速率(Pn)、气孔导度(gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)显著下降,而叶绿素含量显著提高,幼苗生长受抑;低氧胁迫显著提高了黄瓜幼苗叶片的腐胺(Put)、亚精胺(Spd)、精胺(Spm)、多胺(PAs)含量和Put/PAs,但降低了(Spd+Spm) /Put.低氧胁迫下,外源EBR不仅显著提高了黄瓜幼苗的Pn、gs、Tr及叶绿素含量,也显著提高了黄瓜幼苗叶片的游离态Spm、结合态Spd、Spm及束缚态Put、Spd、Spm含量,促进了PAs的进一步积累,且降低了Put/PAs,提高了(Spd+Spm)/Put.可见,外源EBR调节了黄瓜幼苗内源多胺含量及形态的变化,维持了较高的光合性能,促进了叶面积和干物质量的显著增加,缓解了低氧胁迫对黄瓜幼苗的伤害.  相似文献   

14.
采用蛭石栽培,在100mmol·L-1NaCl胁迫下,对耐盐性不同的2个菜用大豆[Glycinemax(L.)Merr.]品种结荚期干物质积累、单株产量及叶片游离态多胺(PAs)水平的变化进行了研究。结果表明:NaCl胁迫显著降低了菜用大豆植株干重及单株产量,但耐盐品种"绿领特早"的降幅低于盐敏感品种"理想高产95-1";与"理想高产95-1"相比,"绿领特早"叶片在整个NaCl胁迫期间均维持了相对较低的H2O2含量、游离态腐胺(Put)含量及较高的游离态亚精胺(Spd)含量,在胁迫6~15d期间维持了相对较高的游离态精胺(Spm)含量、(Spd+Spm)/Put值及较低的Put/PAs值。说明耐盐品种"绿领特早"叶片具有较强的由游离态Put向游离态Spd和Spm转化的能力,维持了较低的游离态Put含量和较高的游离态Spd及Spm含量,进而抑制了活性氧过量积累。  相似文献   

15.
The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.  相似文献   

16.
NaCl胁迫对菜用大豆种子多胺代谢的影响   总被引:1,自引:0,他引:1  
Wang C  Zhu YL  Yang LF  Yang HS 《应用生态学报》2011,22(11):2883-2893
采用蛭石栽培,在100 mmol·L-1NaCl胁迫下,对耐盐性不同的两个品种菜用大豆种子的丙二醛(MDA)含量和多胺(PAs)代谢进行了研究.结果表明:NaCl胁迫显著增加了菜用大豆种子的MDA含量,但耐盐品种‘绿领特早’(LL)的增幅低于盐敏感品种‘理想高产95-1’(LX).与LX相比,LL种子在整个NaCl胁迫期间均维持了相对较高的游离态精胺(Spm)、结合态Spm、结合态亚精胺(Spd)、束缚态Spd和束缚态腐胺(Put)含量,较高的(Spd +Spm )/Put 和(cPAs+bPAs)/fPAs值及较低的Put/PAs值,在胁迫中、后期(9~15 d)维持了相对较高的游离态Spd含量;胁迫期间,LL的精胺酸脱羧酶(ADC)长时期(6~15 d)保持相对较高的活性,而多胺氧化酶(PAO)则长时期(6~15 d)维持相对较低的活性.综上,LL具有较强的多胺合成能力及较强的Put向Spd和Spm以及游离态多胺向结合态和束缚态多胺转化的能力,进而有效抑制了细胞的膜脂过氧化,这可能是其耐盐性较强的重要原因之一.  相似文献   

17.
200 mmol/L的NaCl胁迫8 d大麦幼苗叶片和根系中的三种形态多胺都有不同程度地下降,其中游离态多胺含量的下降幅度最大;高氯酸不溶性结合态多胺含量变化较小.根系中PAO的活性先上升后下降,而叶片中PAO的活性先下降后上升.游离态多胺中,亚精胺和精胺(Spd Spm)的含量变化与相应部位PAO的活性变化趋势相反,表明PAO在盐胁迫下可能调节了游离态多胺的含量从而影响高氯酸可溶结合态与高氯酸不溶结合态多胺的含量.  相似文献   

18.
以4个不同基因型的节瓜为材料,通过两个发育时期(10、19片叶展平)茎尖取样,研究了多胺(PA)含量和比值与植株花性别分化的关系。结果表明,节瓜茎尖4种多胺含量差异显著,两个取样时期都是亚精胺(Spd)〉腐胺(Put)〉尸胺(Cad)〉精胺(Spm)。10片叶展平时期多胺含量与节瓜花性别分化之间没有明确的相关性;19片叶展平时期,节瓜茎尖Put、Spd和多胺总量与植株雌花分化比例呈极显著的正相关,而Cad则与雌花分化比例呈极显著的负相关。在两个取样时期,复合指标Spd/PA都与植株雌花分化比例呈显著的正相关,而(Put+Cad)/(Spd+Spm)均与之呈显著的负相关,可以较好地预测节瓜的花性别分化状况。  相似文献   

19.
Putrescine (Put), spermidine (Spd), and spermine (Spm) are the major polyamines (PAs) in plant, which are not only involved in the regulation of plant developmental and physiological processes, but also play key roles in modulating the defense response of plants to diverse environmental stresses. In this study, Cucumis sativus L. seedlings were cultivated in nutrient solution and sprayed with three kinds of PAs (Put, Spd, and Spm). The effects of PAs were investigated on excess nitrate stress tolerance of C. sativus by measuring growth and nitrogen (N) metabolism parameters. The contents of NO3-?N, NH4-+N, proline and soluble protein in leaves were increased; while plant height, leaf area, shoot fresh and dry weight, root fresh weight were decreased under 140 mM NO3? treatment for 7 d. In addition, the activities of nitrate reductase (NR), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) were significantly inhibited under 140 mM NO3? treatment for 7 d. With foliar treatment by 1 mM Spd or Spm under stress treatment, the contents of Spm, Put, and Spd in leaves increased significantly, except that Spm content decreased under Spd treatment. The activities of NR, glutamine synthetase (GS), GOGAT and GDH and plant height, leaf area, shoot fresh and dry weights were significantly increased. The contents of proline and soluble protein in leaves were significantly enhanced. In contrast, the accumulation of NO3-?N and NH4-+N were significantly decreased. However, there were minor differences in activities of N metabolism enzymes and the content of osmotic adjustment substances under 1 mM Put treatment. These findings suggest that 1 mM exogenous Spm or Spd could enhance the capacity of N metabolism, promote growth and increase resistance to high concentrations of NO3?. The ameliorating effect of Spd was the best, and that of Put the worst.  相似文献   

20.
王红霞  胡金朝  施国新  杨海燕  李阳  赵娟  许晔 《生态学报》2010,30(10):2784-2792
采用营养液水培的方法,研究了外源亚精胺(Spd)和精胺(Spm)对Cu胁迫下水鳖叶片3种形态多胺(PAs)、抗氧化系统及营养元素的影响。结果表明:(1)Cu胁迫使水鳖叶片腐胺(Put)急剧积累,Spd和Spm明显下降,从而使(Spd+Spm)/Put比值也随之下降。外源Spd和Spm显著或极显著逆转Cu诱导的PAs变化,抑制Put的积累,缓解Spd和Spm的下降,从而提高了(Spd+Spm)/Put比值。(2)外源Spd和Spm抑制了Cu胁迫诱导的多胺氧化酶(PAO)的增加,缓解了二胺氧化酶(DAO)的下降。(3)与单一Cu胁迫相比,Spd和Spm显著或极显著提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、游离脯氨酸(Pro)含量,从而降低了超氧阴离子(O2.-)产生速率和过氧化氢(H2O2)含量,极显著降低了丙二醛(MDA)含量,缓解了Cu诱导的氧化胁迫。(4)外源Spd和Spm显著或极显著缓解了Cu胁迫下矿质营养元素吸收平衡的紊乱。以上结果均说明了外施Spd和Spm可增加水鳖对Cu胁迫的耐受性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号