首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic cancer is a lethal disease with limited treatment options for cure. A high degree of intrinsic and acquired therapeutic resistance may result from cellular alterations in genes and proteins involved in drug transportation and metabolism, or from the influences of cancer microenvironment. Mechanistic basis for therapeutic resistance remains unclear and should profoundly impact our ability to understand pancreatic cancer pathogenesis and its effective clinical management. Recent evidences have indicated the importance of epigenetic changes in pancreatic cancer, including posttranslational modifications of proteins. We will review new knowledge on protein arginine methylation and its consequential contribution to therapeutic resistance of pancreatic cancer, underlying molecular mechanism, and clinical application of potential strategies of its reversal.  相似文献   

2.
Pancreatic cancer remains the fourth leading cause of cancer-related death in the US and is expected to be the second leading cause of cancer-related death by 2030. Therefore, it is important to better understand the molecular pathogenesis, phenotypes and features of pancreatic cancer in order to design novel molecularly targeted therapies for achieving better therapeutic outcome of patients with pancreatic cancer. Recently, the roles of microRNAs (miRNAs) in the development and progression of pancreatic cancer became a hot topic in the scientific community of pancreatic cancer research. By conducting miRNA expression profiling, the aberrant expression of miRNAs was revealed in the serum and in cancer tissues from patients with pancreatic cancer. These aberrantly expressed miRNAs are critically correlated with the disease stage, drug resistance, and survival of pancreatic cancer patients. Hence, targeting these tiny molecules, the specific miRNAs, could provide an efficient and optimal approach in the therapy of pancreatic cancer. Indeed, the pre-clinical and in vivo experiments showed that nanoparticle delivery of synthetic oligonucleotides or treatment with natural agents could be useful to modulate the expression of miRNAs and thereby inhibit pancreatic cancer growth and progression, suggesting that targeting miRNAs combined with conventional anti-cancer therapeutics could be a novel therapeutic strategy for increasing drug sensitivity and achieving better therapeutic outcome of patients diagnosed with pancreatic cancer.  相似文献   

3.
Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor, and antibody has been a success in recent preclinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer and provides important information on potential therapeutic targets for pancreatic cancer treatment.  相似文献   

4.
Mucins are a family of multifunctional glycoproteins that mostly line the surface of epithelial cells in the gastrointestinal tract and exert pivotal roles in gut lubrication and protection. Pancreatic cancer is a lethal disease with poor early diagnosis, limited therapeutic effects, and high numbers of cancer‐related deaths. In this review, we introduce the expression profiles of mucins in the normal pancreas, pancreatic precursor neoplasia and pancreatic cancer. Mucins in the pancreas contribute to biological processes such as the protection, lubrication and moisturization of epithelial tissues. They also participate in the carcinogenesis of pancreatic cancer and are used as diagnostic biomarkers and therapeutic targets. Herein, we discuss the important roles of mucins that lead to the lethality of pancreatic adenocarcinoma, particularly MUC1, MUC4, MUC5AC and MUC16 in disease progression, and present a comprehensive analysis of the clinical application of mucins and their promising roles in cancer treatment to gain a better understanding of the role of mucins in pancreatic cancer.  相似文献   

5.
Pancreatic cancer continues to be a malignancy with few therapeutic options. The majority of patients that present for an evaluation have locally advanced or metastatic disease that is incurable by surgical approaches. Chemotherapy and radiotherapy resistance of pancreatic adenocarcinomas limits the efficacy of these therapeutic approaches. Recent evidence supports the existence of human pancreatic cancer stem cells, which appear to drive tumor initiation and progression and are particularly resistant to cell death induced by radiation or chemotherapy. Understanding the mechanisms of pancreatic cancer stem cell self‐renewal and resistance to standard therapies may lead to new, more effective therapies to treat this dismal disease. J. Cell. Biochem. 107: 40–45, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The incidence of pancreatic adenocarcinoma is increasing with more than 43,000 predicted new cases in the US and 65,000 in Europe this year. Pancreatic cancer patients have a short life expectancy with less than 3–4% 5-y survival, which results in an equivalent incidence and mortality rate. One of the major challenges in pancreatic cancer is the identification of pharmacological approaches that overcome the resistance of this cancer to therapy. Intensive research in the past decades has led to the classification of pancreatic cancers and the identification of the driver key genetic events. Despite the advances in understanding the molecular mechanisms responsible for pancreatic cancer pathogenesis, this knowledge had little impact on significantly improving the treatment for this dismal disease. In particular, we know today that the lack of therapeutic response in pancreatic cancer is due to the intrinsic high resistance of these tumors to chemotherapy and radiation, rather than to the inappropriate design of these therapeutic approaches. Thus, in order to ensure a better outcome for pancreatic cancer patients, there is a strong need for research focused on the mechanism that determines this resistant phenotype and the means that might drive enhanced response to therapy.  相似文献   

7.
Pancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.Subject terms: Pancreatic cancer, Oncogenes  相似文献   

8.
Proteomic profiling of pancreatic cancer for biomarker discovery   总被引:15,自引:0,他引:15  
Pancreatic cancer is a uniformly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. In recent years, there has been a substantial interest in applying proteomics technologies to identify protein biomarkers for early detection of cancer. Quantitative proteomic profiling of body fluids, tissues, or other biological samples to identify differentially expressed proteins represents a very promising approach for improving the outcome of this disease. Proteins associated with pancreatic cancer identified through proteomic profiling technologies could be useful as biomarkers for the early diagnosis, therapeutic targets, and disease response markers. In this article, we discuss recent progress and challenges for applying quantitative proteomics technologies for biomarker discovery in pancreatic cancer.  相似文献   

9.
Pancreatic cancer is a challenging disease for patients, doctors and researchers who for decades have searched for a cure for this deadly malignancy. Although existing mouse models of pancreatic cancer have shed light on the mechanistic basis of the neoplastic conversion of the pancreas, their impact in terms of offering new diagnostics and therapeutic modalities remains limited. Chronic pancreatitis is an inflammatory disease of the pancreas that is associated with a gradual damage of the organ and an increased risk of developing neoplastic lesions. In this review, we propose that detailed studies of chronic inflammatory processes in the pancreas will provide insights into the evolution of pancreatic cancer. This information may prove useful in the design of effective therapeutic strategies to battle the disease.  相似文献   

10.
11.
Pancreatic cancer typically has an unfavourable prognosis due to late diagnosis and a lack of therapeutic options. Thus, it is important to better understand its pathological mechanism and to develop more effective treatments for the disease. Human chromosome 20q13 has long been suspected to harbour oncogenes involved in pancreatic cancer and other tumours. In this study, we found that eEF1A2, a gene located in 20q13, was significantly upregulated in pancreatic cancer. Little or no expression of eEF1A2 was detected in normal human pancreatic and chronic pancreatitis tissues, whereas increased eEF1A2 expression occurred in 83% of the pancreatic cancers we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of eEF1A2 promoted cell growth, survival, and invasion in pancreatic cancer. Our data thus suggest that eEF1A2 might play an important role in pancreatic carcinogenesis, possibly by acting as a tumour oncogene.  相似文献   

12.
Pancreatic cancer is a devastating disease that afflicts over 35,000 Americans every year. Since therapeutic options are limited, understanding the molecular aspects of this disease is critical for moving towards targeted treatment of this aggressive form of cancer. Caveolin-1 (Cav-1) and fatty acid synthase (FASN) are two proteins that have been shown to be dysregulated in a number of cancers. Functionally these proteins have been shown to be involved in the process of tumorigenesis. We thus surveyed the expression of both these critical proteins in a series of pancreatic precancerous lesions (pancreatic intraepithelial neoplasia, PanINs) and pancreatic cancers. Cav-1 and FASN expression correlated predominantly with clinical characteristics, such as histologic grade and advanced tumor stage (e.g. high Cav-1 and FASN expression correlated with poor differentiation status) and a significant survival advantage was found in patients with low co-expressing FASN and Cav-1 tumors. Cav-1 and FASN expression was absent in PanIN lesions and the normal ducts and acini. Of note, Cav-1 expression was detected in the fibroblasts of the desmoplastic pancreatic cancer stroma, but not in stromal cells of the normal pancreas. Mechanistically, these data support the notion that these proteins are co-regulated either directly or indirectly by another factor. Importantly, the co-expression of these proteins significantly correlates with clinical features and survival status of pancreatic cancer patients. Thus, Cav-1 and FASN may functionally cooperate in the process of pancreatic tumorigenesis, and as such, may be good candidate prognostic markers and targets for therapeutic intervention.  相似文献   

13.
Pancreatic cancer is one of the deadliest human malignancies, and its prognosis has not improved over the past 40 years. Mouse models that spontaneously develop pancreatic adenocarcinoma and mimic the progression of the human disease are emerging as a new tool to investigate the basic biology of this disease and identify potential therapeutic targets. Here, we describe a new model of metastatic pancreatic adenocarcinoma based on pancreas-specific, inducible and reversible expression of an oncogenic form of Kras, together with pancreas-specific expression of a mutant form of the tumor suppressor p53. Using high-resolution magnetic resonance imaging to follow individual animals in longitudinal studies, we show that both primary and metastatic lesions depend on continuous Kras activity for their maintenance. However, re-activation of Kras* following prolonged inactivation leads to rapid tumor relapse, raising the concern that Kras*-resistance might eventually be acquired. Thus, our data identifies Kras* as a key oncogene in pancreatic cancer maintenance, but raises the possibility of acquired resistance should Kras inhibitors become available for use in pancreatic cancer.  相似文献   

14.
15.
Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction as its defining hallmark. The past several decades have seen dramatic progress in understanding of pancreatic cancer pathogenesis, including identification of precursor lesions, sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and corresponding signature genetic events, and the biological impact of these events on malignant behavior. However, the currently used therapeutic strategies for epithelial tumor cells, which have exhibited potent antitumor activity in cell culture and animal models, have failed to produce significant effects in the clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about 90% of a tumor's mass, clearly is not a passive scaffold for cancer cells but an active contributor to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and the stroma will be important to designing effective therapeutic strategies for pancreatic cancer. This review focuses on the origin of stromal molecular and cellular components in pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration of these two components.  相似文献   

16.
At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.  相似文献   

17.
To identify new biomarkers that improve the early diagnosis and lead to possible therapeutic targets in pancreatic carcinoma, we performed a proteomic approach to compare serum protein expression patterns of pancreatic carcinoma patients with that of gastric cancer patients, other pancreatic disease patients, and healthy volunteers. By two-dimensional gel electrophoresis (2-DE) analyses and mass spectroscopic identification, 10 protein spots were found significantly changed in pancreatic carcinoma and 5 proteins including cyclin I, Rab GDP dissociation inhibitor beta (GDI2), alpha-1 antitrypsin precursor, Haptoglobin precursor, and Serotransferrin precursor were successfully identified. The increased levels of cyclin I and GDI2 found to be associated with pancreatic carcinoma were further confirmed by Western blot analyses in an independent series of serum samples and/or pancreatic juice samples. Applying immunohistochemistry, we further validated expression of cyclin I and GDI2 in additional pancreatic carcinomas. These results indicate that cyclin I and GDI2 may be potential molecular targets for pancreatic cancer diagnostics and therapeutics.  相似文献   

18.

Background

Pancreatic cancer is one of the deadliest of all human malignancies with limited options for therapy. Here, we report the development of an optimized targeted drug delivery system to inhibit advanced stage pancreatic tumor growth in an orthotopic mouse model.

Method/Principal Findings

Targeting specificity in vitro was confirmed by preincubation of the pancreatic cancer cells with C225 as well as Nitrobenzylthioinosine (NBMPR - nucleoside transporter (NT) inhibitor). Upon nanoconjugation functional activity of gemcitabine was retained as tested using a thymidine incorporation assay. Significant stability of the nanoconjugates was maintained, with only 12% release of gemcitabine over a 24-hour period in mouse plasma. Finally, an in vivo study demonstrated the inhibition of tumor growth through targeted delivery of a low dose of gemcitabine in an orthotopic model of pancreatic cancer, mimicking an advanced stage of the disease.

Conclusion

We demonstrated in this study that the gold nanoparticle-based therapeutic containing gemcitabine inhibited tumor growth in an advanced stage of the disease in an orthotopic model of pancreatic cancer. Future work would focus on understanding the pharmacokinetics and combining active targeting with passive targeting to further improve the therapeutic efficacy and increase survival.  相似文献   

19.
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer.  相似文献   

20.
Pancreatic adenocarcinoma is characterized by late diagnosis due to lack of early symptoms, extensive metastasis, and high resistance to chemo/radiation therapy. Recently, a subpopulation of cells within pancreatic cancers, termed cancer stem cells (CSCs), has been characterized and postulated to be the drivers for pancreatic cancer and responsible for metastatic spread. Further studies on pancreatic CSCs are therefore of particular importance to identify novel diagnosis markers and therapeutic targets for this dismal disease. Herein, the malignant phenotype of pancreatic cancer stem-like CD24+CD44+ cells was isolated from a human pancreatic carcinoma cell line (PANC-1) and demonstrated 4-fold increased invasion ability compared to CD24-CD44+ cells. Using lectin microarray and nano LC-MS/MS, we identified a differentially expressed set of glycoproteins between these two subpopulations. Lectin microarray analysis revealed that fucose- and galactose-specific lectins, UEA-1 and DBA, respectively, exhibit distinctly strong binding to CD24+CD44+ cells. The glycoproteins extracted by multilectin affinity chromatography were consequently analyzed by LC-MS/MS. Seventeen differentially expressed glycoproteins were identified, including up-regulated Cytokeratin 8/CK8, Integrin β1/CD29, ICAM1/CD54, and Ribophorin 2/RPN2 and down-regulated Aminopeptidase N/CD13. Immunohistochemical analysis of tissue microarrays showed that CD24 was significantly associated with late-stage pancreatic adenocarcinomas, and RPN2 was exclusively coexpressed with CD24 in a small population of CD24-positive cells. However, CD13 expression was dramatically decreased along with tumor progression, preferentially present on the apical membrane of ductal cells and vessels in early stage tumors. Our findings suggest that these glycoproteins may provide potential therapeutic targets and promising prognostic markers for pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号