首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
Cutaneous fibrosis after wound is evoked by myofibroblasts capable of producing collagen; the derivation and features remain to be investigated. Immunophenotypical characteristics of myofibroblasts were analysed in excisional rat wound healing, of which samples were obtained on post-wounding (PW) days 1 to 26. Myofibroblasts were characterized for expressions of intermediate cytoskeletons such as vimentin, desmin, and α-smooth muscle actin (α-SMA). To pursue the progenitor, immunolabeling analyses were performed using stromal-/bone marrow-stem cell markers (Thy-1 and A3). Myofibroblasts reacting to vimentin and α-SMA were first seen on PW day 5, then peaked on PW day 9 in granulation tissues, and gradually decreased in remodeling tissues; these immunopositive cells reacted simultaneously to Thy-1. Desmin-reacting cells were limited to newly-formed blood vessels in wound bed. The single/double immunolabelings revealed that pericytes (identified by positive reaction to PDGFR-β and negative reaction to endothelial markers) in newly-developing blood vessels reacted to vimentin, α-SMA, Thy-1 and A3, and occasionally to desmin, and that perifollicular dermal sheath cells in the wound periphery showed increased expressions for vimentin, Thy-1 and A3. There is considerable immunophenotypical similarity between myofibroblasts (expressing vimentin, α-SMA and Thy-1), pericytes (reacting to vimentin, α-SMA, Thy-1 and A3) in newly-developing blood vessels, and perifollicular dermal sheath cells (reacting to vimentin, Thy-1 and A3). Collectively, myofibroblasts in rat cutaneous fibrosis are characterized by vimentin, α-SMA and Thy-1 expressions, and the cells might be generated from the pericytes or perifollicular dermal sheath cells in the lineage of stroma-/bone marrow-stem cells.  相似文献   

4.

Background

Epithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis. In vitro studies have also demonstrated that AECs could convert into myofibroblasts following exposure to TGF-β1. In this study, we examined whether EMT occurs in bleomycin (BLM) induced pulmonary fibrosis, and the involvement of bronchial epithelial cells (BECs) in the EMT. Using an α-smooth muscle actin-Cre transgenic mouse (α-SMA-Cre/R26R) strain, we labelled myofibroblasts in vivo. We also performed a phenotypic analysis of human BEC lines during TGF-β1 stimulation in vitro.

Methods

We generated the α-SMA-Cre mouse strain by pronuclear microinjection with a Cre recombinase cDNA driven by the mouse α-smooth muscle actin (α-SMA) promoter. α-SMA-Cre mice were crossed with the Cre-dependent LacZ expressing strain R26R to produce the double transgenic strain α-SMA-Cre/R26R. β-galactosidase (βgal) staining, α-SMA and smooth muscle myosin heavy chains immunostaining were carried out simultaneously to confirm the specificity of expression of the transgenic reporter within smooth muscle cells (SMCs) under physiological conditions. BLM-induced peribronchial fibrosis in α-SMA-Cre/R26R mice was examined by pulmonary βgal staining and α-SMA immunofluorescence staining. To confirm in vivo observations of BECs undergoing EMT, we stimulated human BEC line 16HBE with TGF-β1 and examined the localization of the myofibroblast markers α-SMA and F-actin, and the epithelial marker E-cadherin by immunofluorescence.

Results

βgal staining in organs of healthy α-SMA-Cre/R26R mice corresponded with the distribution of SMCs, as confirmed by α-SMA and SM-MHC immunostaining. BLM-treated mice showed significantly enhanced βgal staining in subepithelial areas in bronchi, terminal bronchioles and walls of pulmonary vessels. Some AECs in certain peribronchial areas or even a small subset of BECs were also positively stained, as confirmed by α-SMA immunostaining. In vitro, addition of TGF-β1 to 16HBE cells could also stimulate the expression of α-SMA and F-actin, while E-cadherin was decreased, consistent with an EMT.

Conclusion

We observed airway EMT in BLM-induced peribronchial fibrosis mice. BECs, like AECs, have the capacity to undergo EMT and to contribute to mesenchymal expansion in pulmonary fibrosis.  相似文献   

5.
A range of cell types of mesenchymal origin express α-smooth muscle actin (α-SMA), a protein that plays a key role in controlling cell motility and differentiation along the fibrocyte and myofibroblast lineages. Although α-SMA is often expressed in stromal cells associated to a variety of cancers including hematological malignancies, up to now the role of anti-cancer drugs on α-SMA has not been deeply investigated. In this study, we demonstrated that Nutlin-3, the small molecule inhibitor of the MDM2/p53 interactions, significantly up-regulated the mRNA and protein levels of α-SMA in normal macrophages as well as in p53(wild-type) but not in p53(mutated/null) myeloid leukemic cells. The p53-dependence of α-SMA up-regulation induced by Nutlin-3 was demonstrated in experiments performed with siRNA for p53. Of note, Nutlin-3 mediated up-regulation of α-SMA in OCI leukemic cells was accompanied by cell adhesion to plastic substrate and by reduced cell migratory response in transwell assays. Notably, the role of α-SMA induction in the modulation of myeloid cell migration was clearly documented in α-SMA gene knockdown experiments. In addition, Nutlin-3 significantly up-regulated α-SMA expression in primary endothelial cells, but not in fibroblasts and mesenchymal stem cells (MSC). Conversely, transforming growth factor-β1 up-regulated α-SMA in fibroblasts and MSC, but not in macrophages and endothelial cells. Taken together, these data indicate that Nutlin-3 is a potent inducer of α-SMA in both normal and leukemic myeloid cells as well as in endothelial cells.  相似文献   

6.
Myofibroblasts combine the matrix-producing functions of fibroblasts and the contractile properties of smooth muscle cells. They are the main effectors of fibrosis in all tissues and make a major contribution to other aspects of the wound healing response, including regeneration and angiogenesis. They display the de novo expression of α-smooth muscle actin. Myofibroblasts, which are absent from the normal liver, are derived from two major sources: hepatic stellate cells (HSCs) and portal mesenchymal cells in the injured liver. Reliable markers for distinguishing between the two subpopulations at the myofibroblast stage are currently lacking, but there is evidence to suggest that both myofibroblast cell types, each exposed to a particular microenvironment (e.g. hypoxia for HSC-MFs, ductular reaction for portal mesenchymal cell-derived myofibroblasts (PMFs)), expand and exert specialist functions, in scarring and inflammation for PMFs, and in vasoregulation and hepatocellular healing for HSC-MFs. Angiogenesis is a major mechanism by which myofibroblasts contribute to the progression of fibrosis in liver disease. It has been clearly demonstrated that liver fibrosis can regress, and this process involves a deactivation of myofibroblasts, although probably not to a fully quiescent phenotype. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

7.
The myofibroblast is a stromal cell of the gastrointestinal (GI) tract that has been gaining considerable attention for its critical role in many GI functions. While several myofibroblast cell lines are commercially available to study these cells in vitro, research results from a cell line exposed to experimental cell culture conditions have inherent limitations due to the overly reductionist nature of the work. Use of primary myofibroblasts offers a great advantage in terms of confirming experimental findings identified in a cell line. Isolation of primary myofibroblasts from an animal model allows for the study of myofibroblasts under conditions that more closely mimic the disease state being studied. Isolation of primary myofibroblasts from human colon tissue provides arguably the most relevant experimental data, since the cells come directly from patients with the underlying disease. We describe a well-established technique that can be utilized to isolate primary myofibroblasts from both mouse and human colon tissue. These isolated cells have been characterized to be alpha-smooth muscle actin and vimentin-positive, and desmin-negative, consistent with subepithelial intestinal myofibroblasts. Primary myofibroblast cells can be grown in cell culture and used for experimental purposes over a limited number of passages.  相似文献   

8.
Recent studies have employed two markers, alpha-smooth muscle actin (α-SMA) and STRO-1, to detect cells with mesenchymal stem cell properties in dental pulp. The present study aimed to explore the expression profile of α-SMA and STRO-1 in intact dental pulp as well as during wound healing in adult dental pulp tissue. Healthy pulps were mechanically exposed and capped with the clinically used materials MTA (ProRoot White MTA) or Ca(OH)(2) to induce a mineralized barrier at the exposed surface. After 7-42?days, the teeth were extracted and processed for immunohistochemical analysis using antibodies against α-SMA, STRO-1 and nestin (a neurogenic cytoskeletal protein expressed in odontoblasts). In normal pulp, α-SMA was detected in vascular smooth muscle cells and pericytes. Double immunofluorescent staining with STRO-1 and α-SMA showed that STRO-1 was localized in vascular smooth muscle cells, pericytes and endothelial cells, in addition to nerve fibers. During the process of dental pulp healing, numerous α-SMA-positive cells emerged at the wound margin at 14?days, and the initially formed mineralized barrier was lined with α-SMA-positive cells similar in appearance to reparative odontoblasts, some of which co-expressed nestin. STRO-1 was abundant in nerve fibers. In the advanced stage of mineralized barrier formation at 42?days, cells lining the barrier were stained with nestin, and no staining of α-SMA was detected in those cells. These observations indicate that α-SMA-positive cells temporarily appear along the wound margin during the earlier phase of mineralized barrier formation and STRO-1 is confined in vascular and neuronal elements.  相似文献   

9.
The origin of fibrotic cells within connective tissue is unclear. For example, the extent to which microvascular pericytes contribute to the number of myofibroblasts present in dermal fibrosis in uncertain. Connective tissue growth factor (CTGF/CCN2) is a marker and mediator of fibrosis. In this report, we use an antibody recognizing CCN2 to assess the cell types in mouse dermis which express CCN2 in the bleomycin model of skin scleroderma. Control (PBS injected) and fibrotic (bleomycin-injected) dermis was examined for CCN2, α-smooth muscle actin (α-SMA) (to detect myofibroblasts), and NG2 (to detect pericytes) expression. Consistent with previously published data, CCN2 expression was largely absent in the dermis of control mice. However, upon exposure to bleomycin, CCN2 was observed in the dermis. Cells that expressed CCN2 were α−SMA-expressing myofibroblasts. Approximately 85% of myofibroblasts were NG2-positive, CCN2-expressing pericytes, indicating that pericytes significantly contributed to the presence of myofibroblasts in sclerotic dermis. Thus CCN2 is induced in fibrotic skin, correlating with the induction of myofibroblast induction. Moreover, CCN2-expressing pericytes significantly contribute to the appearance of myofibroblasts in bleomycin-induced skin scleroderma.  相似文献   

10.
11.
Short bowel syndrome is an acquired condition in which the length of the small intestine is insufficient to perform its normal absorptive function. Current therapies are limited as the developmental mechanisms that normally regulate elongation of the small intestine are poorly understood. Here, we identify Fgf9 as an important epithelial-to-mesenchymal signal required for proper small intestinal morphogenesis. Mouse embryos that lack either Fgf9 or the mesenchymal receptors for Fgf9 contained a disproportionately shortened small intestine, decreased mesenchymal proliferation, premature differentiation of fibroblasts into myofibroblasts and significantly elevated Tgfbeta signaling. These findings suggest that Fgf9 normally functions to repress Tgfbeta signaling in these cells. In vivo, a small subset of mesenchymal cells expressed phospho-Erk and the secreted Tgfbeta inhibitors Fst and Fstl1 in an Fgf9-dependent fashion. The p-Erk/Fst/Fstl1-expressing cells were most consistent with intestinal mesenchymal stem cells (iMSCs). We found that isolated iMSCs expressed p-Erk, Fst and Fstl1, and could repress the differentiation of intestinal myofibroblasts in co-culture. These data suggest a model in which epithelial-derived Fgf9 stimulates iMSCs that in turn regulate underlying mesenchymal fibroblast proliferation and differentiation at least in part through inhibition of Tgfbeta signaling in the mesenchyme. Taken together, the interaction of FGF and TGFbeta signaling pathways in the intestinal mesenchyme could represent novel targets for future short bowel syndrome therapies.  相似文献   

12.
The intestinal subepithelial myofibroblasts (ISEMFs) are located in the lamina propria under the epithelial cells. ISEMFs are thought to have an important role in protecting and maintaining the integrity of the epithelial cell layer and also in the process of wound healing. In this study, we report that the membrane-bound proteoglycan NG2 is abundantly distributed in the ISEMF layer of the mouse and human intestines. NG2 immunostaining in this layer is distributed with similar intensity from the crypt to villi. NG2 is also immunolocalized along the membranes of smooth muscle cells in the intestinal muscle layer. However, skeletal and cardiac muscles are not immunostained for NG2, demonstrating selective expression of the proteoglycan by smooth muscle cells. Using electron microscopy, NG2 immunoreactivity was strongly observed along the cell membranes of ISEMF, with weak diffusion into the neighboring matrix, indicative of the presence of some “shed” NG2. This first report of NG2 proteoglycan expression by ISEMF provides insights into the nature of the interaction of these cells with extracellular matrix and/or intestinal epithelial cells.  相似文献   

13.
This study tested the hypothesis that insulin-like growth factor I (IGF-I) expression is increased at sites of fibrosis in diseased intestine of patients with Crohn's disease (CD). IGF-I mRNA was quantified by RNase protection assay in uninvolved and involved intestine of 13 CD patients (10 ileum, 3 colon) and 7 ulcerative colitis (UC) patients (colon). In situ hybridization histochemistry compared the localization of IGF-I and procollagen alpha1(I) mRNAs. Masson's trichrome staining and immunohistochemistry for IGF-I precursor, alpha-smooth muscle actin (A), vimentin (V), desmin (D), and c-kit were used to examine the mesenchymal cell subtypes that express IGF-I and collagen in uninvolved and involved ileum and colon of CD patients and "normal" ileum and colon from noninflammatory controls. IGF-I mRNA was elevated in involved ileum and colon of patients with CD but not in involved colon of patients with UC. IGF-I and procollagen alpha1(I) mRNA showed overlapping distribution within fibrotic submucosa and muscularis propria of involved CD ileum and colon. In involved CD intestine, increased IGF-I precursor expression localized to mesenchymal cells in regions of tissue disorganization and fibrosis in muscularis mucosa, submucosa, and muscularis propria. In these regions, there were increased numbers of V(+) cells relative to normal or uninvolved intestine. Increased IGF-I expression was localized to cells with a phenotype typical of fibroblasts (V(+)/A(-)/D(-)), myofibroblasts (V(+)/A(+)/D(+)), and, to a lesser extent, cells with normal enteric smooth muscle phenotype (V(-)/A(+)/D(+)). We conclude that increased IGF-I expression in multiple mesenchymal cell subtypes and increased numbers of cells with fibroblast/myofibroblast phenotype are involved in fibrosis associated with CD.  相似文献   

14.
The localization of prostaglandin (PG) endoperoxide synthase in bovine intestine was examined immunocytochemically with polyclonal antibody raised against PG endoperoxide synthase purified from bovine seminal glands. The most intense positive staining reaction for the enzyme was present in mast cells. Mast cells were found to be widely distributed in the intestinal wall, and were particularly numerous in the lamina propria. Most of the mast cells in the lamina propria of the intestinal villi were elongated and oriented with their long axis parallel to the plane of the absorptive epithelium. In whole mount preparations of jejunal villi, mast cells were seen to form a two-dimensional network in the lamina propria. In addition to mast cells, smooth muscle cells of the inner circular muscle layer and muscularis mucosae, nerve cells and fibers, endothelial cells of arterioles, and serosal epithelial cells also showed faint to moderate staining for the enzyme. These results suggested that mast cells are the major source of PGs in the bovine intestinal wall. The characteristic arrangement of mast cells in the intestinal villi may be related to their functions in this portion of the bovine intestine.  相似文献   

15.
Smooth muscle alpha-actin filaments are a defining feature of mesenchymal stem cells, and of mesenchyme-derived contractile smooth muscle cells, pericytes and myofibroblasts. Here, we show that adult bone marrow-derived mesenchymal stem cells express abundant cell surface platelet-derived growth factor receptor-alpha, having a high ratio to platelet-derived growth factor receptor-beta. Signaling through platelet-derived growth factor receptor-alpha increases smooth muscle alpha-actin filaments by activating RhoA, which results in Rho-associated kinase (ROCK)-dependent cofilin phosphorylation, enhancing smooth muscle alpha-actin filament polymerization, and also upregulates smooth muscle alpha-actin expression. In contrast, platelet-derived growth factor receptor-beta signaling strongly upregulates RhoE, which inhibits ROCK activity, promoting smooth muscle alpha-actin filament depolymerization. This study thus provides new insights into the distinct roles of platelet-derived growth factor receptor-alpha and -beta signaling in regulating the adult mesenchymal stem cell contractile cytoskeleton.  相似文献   

16.
17.
Recent research has shown that adipose tissues contain abundant MSCs (mesenchymal stem cells). The origin and location of the adipose stem cells, however, remain unknown, presenting an obstacle to the further purification and study of these cells. In the present study, we aimed at investigating the origins of adipose stem cells. α-SMA (α-smooth muscle actin) is one of the markers of pericytes. We harvested ASCs (adipose stromal cells) from α-SMA-GFP (green fluorescent protein) transgenic mice and sorted them into GFP-positive and GFP-negative cells by FACS. Multilineage differentiation tests were applied to examine the pluripotent ability of the α-SMA-GFP-positive and -negative cells. Immunofluorescent staining for α-SMA and PDGF-Rβ (platelet-derived growth factor receptor β) were applied to identify the α-SMA-GFP-positive cells. Then α-SMA-GFP-positive cells were loaded on a collagen-fibronectin gel with endothelial cells to test their vascularization ability both in vitro and in vivo. Results show that, in adipose tissue, all of the α-SMA-GFP-positive cells congregate around the blood vessels. Only the α-SMA-GFP-positive cells have multilineage differentiation ability, while the α-SMA-GFP-negative cells can only differentiate in an adipogenic direction. The α-SMA-GFP-positive cells maintained expression of α-SMA during multilineage differentiation. The α-SMA-GFP-positive cells can promote the vascularization of endothelial cells in three-dimensional culture both in vitro and in vivo. We conclude that the adipose stem cells originate from perivascular cells and congregate around blood vessels.  相似文献   

18.
Cytoglobin/stellate cell activation-associated protein (Cygb/STAP), a hemoprotein, functions as part of an O2 reservoir with protective effects against oxidative stress in hepatic stellate cells. Heterogeneous expression of the neural cell adhesion molecule (NCAM)+ and/or α-smooth muscle actin (αSMA)+ has been noted in subepithelial myofibroblasts and interstitial cells of the same lineage in the colorectum. We have demonstrated that early genomic instability of both epithelial and stromal cells in ulcerative colitis (UC) is important for colorectal tumorigenesis, as well as for mucosal remodeling. To further clarify possible roles of stromal cells in mucosal remodeling and tumor development in UC, we here focused on Cygb expression of subepithelial myofibroblasts and interstitial cells, as well as αSMA and HSP47. Noncancerous mucosa of resected rectae from UC patients with or without colorectal neoplasia (14 and 20 cases, respectively) and of sporadic rectal cancer cases (16) was analyzed immunohistochemically, as well as by immuno-fluorescence and electron microscopy. The results, heterogeneous phenotypes of Cygb+, αSMA+ and HSP47+ subepithelial myofibroblasts and interstitial cells, corresponding to rectal stellate cells, were demonstrated. A decrease of Cygb+ subepithelial myofibroblasts and an increase of αSMA+ interstitial cells were significant in UC, as compared to normal rectal mucosa. Furthermore, a decrease of Cygb+ subepithelial myofibroblasts, correlating with αSMA+ and HSP47+ cells, was significant in long-standing UC with neoplasia. In conclusion, there are heterogeneous phenotypes of Cygb+, αSMA+ and HSP47+ subepithelial myofibroblasts and interstitial cells in the rectal mucosa. Mucosal remodeling with alterations of Cygb+ and/or αSMA+/HSP47+ stromal cells might have some relation to UC-associated tumorigenesis.  相似文献   

19.
Insulin-like growth factor (IGF)-I and its binding protein IGF binding protein 5 (IGFBP-5) were highly expressed in inflamed and fibrotic intestine in experimental Crohn's disease. IGF-I induced proliferation and increased collagen synthesis by smooth muscle cells and fibroblasts/myofibroblasts in vitro. Here we studied IGF-I and IGFBP-5 in Crohn's disease tissue. Tissue was collected from patients undergoing intestinal resection for Crohn's disease. IGF-I and IGFBP-5 mRNAs were quantitated by RNase protection assay and Northern blot analysis, respectively. In situ hybridization was performed to localize mRNA expression, and Western immunoblot was performed to quantitate protein expression. IGF-I and IGFBP-5 mRNAs were increased in inflamed/fibrotic intestine compared with normal-appearing intestine. IGF-I mRNA was expressed in multiple cell types in the lamina propria and fibroblast-like cells of the submucosa and muscularis externa. IGFBP-5 mRNA was highly expressed in smooth muscle of the muscularis mucosae and muscularis externa as well as fibroblast-like cells throughout the bowel wall. Tissue IGFBP-5 protein correlated with collagen type I (r = 0.82). These findings are consistent with a mechanism whereby IGF-I acts on smooth muscle and fibroblasts/myofibroblasts to increase collagen synthesis and cellular proliferation; its effects may be modulated by locally expressed IGFBP-5.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号