首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Australian Thrasorinae are revised and Mikeius is transferred to Mikeiinae Paretas-Martínez & Pujade-Villar, subfam. n., and Mikeius clavatus Pujade-Villar & Restrepo-Ortiz, sp. n., is described. Two new genera of Thrasorinae are erected: Cicatrix Paretas-Martínez, gen. n., including Cicatrix pilosiscutum(Girault), comb. n. from Amblynotus, Cicatrix schauffi (Buffington), comb. n. from Mikeius, and Cicatrix neumannoides Paretas-Martínez & Restrepo-Ortiz, sp. n.; and Palmiriella Pujade-Villar & Paretas-Martínez, gen. n., including Palmiriella neumanni (Buffington), comb. n. from Mikeius, Thrasorus rieki Paretas-Martínez & Pujade-Villar, sp. n., is also described. A phylogenetic analysis of 176 morphological and biological characters, including all these new taxa and all genera previously included in Thrasorinae, was conducted. All subfamilies were recovered as monophyletic, with the following relationships: Parnipinae (Euceroptrinae (Mikeiinae (Plectocynipinae (Thrasorinae)))). A worldwide key to the subfamilies of Figitidae is provided that includes the new subfamily, as well as a key to genera Thrasorinae.  相似文献   

2.
A phylogeny of the Figitidae (Hymenoptera: Cynipoidea) is presented based on combined analysis of molecular (28S‐D2 and D3, COI and 18S‐E17‐35), morphological and life‐history data. Data are analyzed by parsimony and Bayesian inference methods. Taxon sampling was held at a premium, and the resulting matrix contained 168 terminal taxa representing eight of nine subfamilies (Pycnostigminae not included) and all major subgroups of each subfamily. Alignment of the 28S D2 + D3 gene fragment based on a structural model resulted in the most defendable and least conflicting alignment tested. Melanips, previously classified in Figitinae, was consistently found to be the sister group of the Aspicerinae; Euceroptres, historically classified in Thrasorinae, frequently rendered that subfamily paraphyletic in these analyses. The general evolutionary trend is for early figitids to be parasitoids of gall inducing insects, with later host shifts occurring to exposed hosts associated with aphids. © The Willi Hennig Society 2007.  相似文献   

3.
Larvae of the parasitic wasp family Figitidae develop as internal parasitoids of other endopterygote insect larvae. The hosts are typically dipteran larvae living in other microhabitats but the earliest figitids probably attacked gall-inhabiting hymenopteran larvae. Here, we formally describe a new genus (Parnips) and subfamily (Parnipinae) for a species that is likely to be a surviving representative of these early gall-associated figitids. The species, P. nigripes , has been reared repeatedly from galls inside the seed capsules of annual poppies (Papaver dubium and P. rhoeas) in the Mediterranean region together with the gall inducer Barbotinia oraniensis belonging to the Cynipidae, the sister group of Figitidae. Parnips nigripes is strikingly cynipid-like and was first assumed to be a cynipid gall inducer of the genus Aulacidea. Phylogenetic analyses have since indicated that the similarity with the Cynipidae is symplesiomorphic and that P. nigripes belongs to the Figitidae, where it forms the sister group of all other extant figitids. Recently, it has also been shown that P. nigripes is a parasitoid of the gall-inducing Barbotinia oraniensis , consistent with its proposed phylogenetic position. Parnips nigripes shares several unusual morphological traits with its host. We speculate that many of these similarities are homologous even though the lineages separated at least 83 million years ago.  相似文献   

4.
Based on several structural and biological characteristics, the Cynipoidea can be divided into two groups, 'macrocynipoids' and 'microcynipoids'. The macrocynipoids (i.e. the family Liopteridae and the genera Austrocynips, Eileenella, Heteribalia and Ibalia ) are generally large insects that parasitize wood- or cone-boring insect larvae. The microcynipoids are smaller insects that are either phytophagous gall inducers and inquilines (Cynipidae) or parasitoids of larvae of Hymenoptera, Neuroptera or Diptera (Figitidae sensu lato , including the families Eucoilidae, Charipidae and Anacharitidae). The phylogenetic relationships among genera of macrocynipoids and between these and a sample of four genera representing the Figitidae and Cynipidae were examined by parsimony analysis of 110 external morphological characters of adults. Within the macrocynipoids, three monophyletic lineages emerged, classified here as different families: the Austrocynipidae, with a single species, Austrocynips mirabilis , the only cynipoid with a true pterostigma; the Ibaliidae, including the genera Eileenella, Ibalia and Heteribalia ; and the Liopteridae, comprising the remaining genera of macrocynipoids. The analysis further supported the monophyly of the microcynipoids and indicated that the macrocynipoids form a paraphyletic group relative to the microcynipoids, with the shortest tree suggesting the relationship (Austrocynipidae, (Ibaliidae, (Liopteridae, microcynipoids))). These results imply that cynipoids were originally parasitoids of wood-boring insect larvae and that the other modes of life evolved secondarily within the group.  相似文献   

5.
Tragopogon comprises approximately 150 described species distributed throughout Eurasia from Ireland and the UK to India and China with a few species in North Africa. Most of the species diversity is found in Eastern Europe to Western Asia. Previous phylogenetic analyses identified several major clades, generally corresponding to recognized taxonomic sections, although relationships both among these clades and among species within clades remain largely unresolved. These patterns are consistent with rapid diversification following the origin of Tragopogon, and this study addresses the timing and rate of diversification in Tragopogon. Using BEAST to simultaneously estimate a phylogeny and divergence times, we estimate the age of a major split and subsequent rapid divergence within Tragopogon to be ~2.6 Ma (and 1.7–5.4 Ma using various clock estimates). Based on the age estimates obtained with BEAST (HPD 1.7–5.4 Ma) for the origin of crown group Tragopogon and 200 estimated species (to accommodate a large number of cryptic species), the diversification rate of Tragopogon is approximately 0.84–2.71 species/Myr for the crown group, assuming low levels of extinction. This estimate is comparable in rate to a rapid Eurasian radiation in Dianthus (0.66–3.89 species/Myr), which occurs in the same or similar habitats. Using available data, we show that subclades of various plant taxa that occur in the same semi‐arid habitats of Eurasia also represent rapid radiations occurring during roughly the same window of time (1.7–5.4 Ma), suggesting similar causal events. However, not all species‐rich plant genera from the same habitats diverged at the same time, or at the same tempo. Radiations of several other clades in this same habitat (e.g. Campanula, Knautia, Scabiosa) occurred at earlier dates (45–4.28 Ma). Existing phylogenetic data and diversification estimates therefore indicate that, although some elements of these semi‐arid communities radiated during the Plio‐Pleistocene period, other clades sharing the same habitat appear to have diversified earlier.  相似文献   

6.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

7.
When postulating evolutionary hypotheses for diverse groups of taxa using molecular data, there is a tradeoff between sampling large numbers of taxa with a few Sanger-sequenced genes or sampling fewer taxa with hundreds to thousands of next-generation-sequenced genes. High taxon sampling enables the testing of evolutionary hypotheses that are sensitive to sampling bias (i.e. dating, biogeography and diversification analyses), whereas high character sampling improves resolution of critical nodes. In a group of ant parasitoids (Hymenoptera: Eucharitidae: Oraseminae), we analyse both of these types of datasets independently (203 taxa with five Sanger loci, 92 taxa with 348 anchored hybrid enrichment loci) and in combination (229 taxa, 353 loci) to explore divergence dating, biogeography, host relationships and differential rates of diversification. Oraseminae specialize as parasitoids of the immature stages of ants in the subfamily Myrmicinae (Hymenoptera: Formicidae), with ants in the genus Pheidole being their most common and presumed ancestral host. A general assumption is that the distribution of the parasite must be limited by any range contraction or expansion of its host. Recent studies support a single New World to Old World dispersal pattern for Pheidole at c. 11–27 Ma. Using multiple phylogenetic inference methods (parsimony, maximum likelihood, dated Bayesian and coalescent analyses), we provide a robust phylogeny showing that Oraseminae dispersed in the opposite direction, from Old World to New World, c. 24–33 Ma, which implies that they existed in the Old World before their presumed ancestral hosts. Their dispersal into the New World appears to have promoted an increased diversification rate. Both the host and parasitoid show single unidirectional dispersals in accordance with the presence of the Beringian Land Bridge during the Oligocene, a time when the changing northern climate probably limited the dispersal ability of such tropically adapted groups.  相似文献   

8.
In parasitoid wasps, the process of locating and selecting suitable oviposition sites is under strong selection due to the direct linkage of successful host selection and female fitness. Leptopilina clavipes Hartig (Hymenoptera: Figitidae) is a parasitoid wasp of larvae of several Drosophila species that occurs over Western Europe, where it shows genetic differentiation between populations from northern and southern Europe. It is expected to experience differential selection pressures on both physiological (survival) and behavioural (host selection) components of foraging, because it occurs over a broad geographic range. We investigated whether the genetic differentiation in L. clavipes is linked to differentiation in both the physiological and behavioural components of foraging. We compared survival and host‐selection behaviour of two L. clavipes strains, one originating from northwestern Europe and one from southern Europe. In a series of choice experiments, females were offered pairs of larvae from three host species that are present in both regions, but use different breeding substrates: Drosophila phalerata Meigen (fungi), Drosophila subobscura Collin (rotting plant material, fungi, and fermenting fruits), and Drosophila melanogaster Meigen (fermenting fruits) (all Diptera: Drosophilidae). Survival patterns across the three host species were similar for both L. clavipes strains. Host‐selection behaviour did differ, where parasitoids from southern Europe accepted all hosts offered, while parasitoids from northwestern Europe were more specialists and accepted hosts breeding in fungi, but were reluctant towards D. melanogaster. This differentiation in host‐selection behaviour reflects the genetic differentiation present in European L. clavipes and shows adaptation to local differences in host communities.  相似文献   

9.
Studies of thermal level‐related asynchrony in a host–parasitoid relationship are necessary to understand the effects of climate change on new host–parasitoid interactions. In the Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) and its Chalcidoidea parasitoids, phenological synchrony is assumed to be weather‐dependent in a new area of expansion. To evaluate the effects of environmental thermal regimes on the host, a phenology model for different cynipid stages (larvae, pupae, adults, and adult emergence) and a host–parasitoid phenological estimator are developed in three chestnut fields during two successive growth seasons and subsequently validated in areas with chestnut fields at two different altitudes. Comparisons of the timings of the juvenile and adult stages with those of the parasitoid complex demonstrate that the shortest period of occurrence for cynipids within galls has negative effects on the host–parasitoid relationships at higher temperature levels, thereby increasing phenological asynchrony for some parasitoids species. Reducing the development time of pupae and adults decreases the likelihood of success for some parasitoid species at higher temperature levels. We also record the extension of the gall wasp development time (approximately 15 days) at higher altitudes (linked to a lower mean temperature of approximately 1.5 °C). These results highlight how parasitization on the new hosts is dependent on the host phenology and, in the present study, is limited by the short duration of the presence of the host in galls, which could explain the considerable differences in cynipid gall wasp parasitization recorded at different altimeters.  相似文献   

10.
Aim Similar regimes of selection in different geographical settings can deterministically produce similar adaptive morphologies. We tested the hypothesis that the evolutionary trajectories of fish in upwelling zones can be altered by biogeographic contingencies in the biological and physical environment. Location Eastern Pacific and western Atlantic oceans. Methods We estimated phylogenetic relationships among eastern Pacific temperate anchovies (genus Engraulis) and tropical anchovies (genus Cetengraulis) with neighbour‐joining and Bayesian tree analysis of a 521‐bp segment of mitochondrial DNA cytochrome b. Available sequences for five additional engraulid taxa were included to establish polarity of the tree. Bayesian estimates (BEAST) of time to most recent common ancestor (TMRCA) for the nodes in the phylogeny were calibrated with divergence between Cetengraulis edentulus and Cetengraulis mysticetus precipitated by the rise of the Panama Isthmus 2.8–3.2 Ma. Results Neighbour‐joining and Bayesian trees indicate that South American Engraulis anchoita (Argentina) and Engraulis ringens (Chile) together are basal sister taxa to the California anchovy (Engraulis mordax) and Old World anchovies (Engraulis japonicas, Engraulis australis, Engraulis capensis and Engraulis encrasicolus). The two tropical species of Cetengraulis are sister‐taxa to Californian E. mordax, even though their phenotypes and ecologies differ markedly. A relaxed molecular clock indicates a TMRCA between Californian E. mordax and Cetengraulis at about 4.2 Ma (3.0–6.3 Ma 95% highest probability density). Main conclusions The TMRCA between the California anchovy, E. mordax, and tropical Cetengraulis coincides with the formation of the Gulf of California, which provided opportunities for allopatric isolation during climate oscillations. Mid‐Pliocene warming (3.1–2.9 Ma) may have trapped ancestors of Cetengraulis in the Gulf of California, where they evolved digestive tract morphologies to exploit inshore tropical habitats with low plankton productivities. While populations of several other temperate fishes have become isolated in the Gulf of California, few of these derived species show strong adaptive shifts from temperate sister taxa or range expansions into the tropical provinces of the western Atlantic and eastern Pacific.  相似文献   

11.
In studies of foraging behaviour in a multitrophic context, the fourth trophic level has generally been ignored. We used four aphid hyperparasitoid species: Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae), Asaphes suspensus Walker (Hymenoptera: Pteromalidae), Alloxysta victrix (Westwood) (Hymenoptera: Alloxystidae) and Syrphophagus aphidivorus (Mayr) (Hymenoptera: Encyrtidae), to correlate their response to different cues with their ecological attributes such as host range and host stage. In addition, we compared our results with studies of primary parasitoids on the same plant–herbivore system. First, the olfactory response of females was tested in a Y‐tube olfactometer (single choice: plant, aphid, honeydew, parasitised aphid, aphid mummy, or virgin female parasitoid; dual choice: clean plant, plant with aphids, or plant–host complex). Second, their foraging behaviour was described on plants with different stimuli (honeydew, aphids, parasitised aphids, and aphid mummies). The results indicated that olfactory cues are probably not essential cues for hyperparasitoid females. In foraging behaviour on the plant, all species prolonged their total visit time and search time as compared to the control treatment (clean plant). Only A. victrix did not react to the honeydew. Oviposition in mummies prolonged the total visit time because of the long handling time, but the effect of this behaviour on search time could not be determined. No clear correlation between foraging behaviour and host stage or host range was found. In contrast to specialised primary aphid parasitoids that have strong fixed responses to specific kairomones and herbivore‐induced synomones, more generalist aphid hyperparasitoids seem to depend less on volatile olfactory stimuli, but show similarities with primary parasitoids in their use of contact cues while searching on a plant.  相似文献   

12.
Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), is one of the most serious pests attacking chestnut trees. Recently it was incidentally introduced into Northwest Italy and it is now spreading throughout Europe. This pest was successfully controlled in Japan by introducing a parasitoid, Torymus sinensis Kamijo (Hymenoptera: Torymidae), from China’s mainland. Following this successful experience, the parasitoid was introduced into Italy from Japan. One year of preliminary studies led to a successful method of rearing imported galls with a synchronization between the parasitoid’s emergence and the presence of the target galls in the field. In two consecutive years, a total of 2,117 individuals were released in several sites covering most of the infested area. There are encouraging data about the settlement of the parasitoid and its synchrony with the host’s cycle: from about 64,000 host galls collected in the field over 200 T. sinensis were reared. The role of native parasitoids associated with the chestnut gall pest in its Italian distribution range is also discussed.  相似文献   

13.
The host range of parasitoids varies greatly among species: Some only parasitize one to a few hosts (specialists), while others parasitize multiple species or a variety of host types (generalists). The direction of most host range shifts in parasitoid groups, that is from generalist to specialist or, alternatively, from specialist to generalist, is unknown. To explore the origin of host range shifts, we studied a clade within the genus Torymus (Hymenoptera, Chalcidoidea) that includes both generalist and specialist parasitoids of Cynipidae (Hymenoptera). We analysed the phylogenetic relationships of the species of Torymus on the basis of two gene fragments (cox1 and ITS2) of 246 specimens and performed an ancestral state reconstruction of the specialist/generalist trait. Our results revealed the following: (a) The ancestral state of this group of Torymus is specialist, with the generalist state evolving through a loss of specialization. (b) The species Torymus cyaneus and Torymus flavipes both have a strong genetic structure, suggesting the existence of different biological identities. (c) There has been a host plant shift in the lineage(s) leading to Torymus rubi and Torymus bedeguaris from galls on Quercus to those on Rosaceae. (d) The alien species Torymus sinensis and the native European species Torymus notatus are phylogenetically closely related. (e) Speciation within Torymus was likely associated with the diversification of their cynipid hosts, which itself was driven by the dramatic changes in climate and vegetation that occurred during the Miocene.  相似文献   

14.
In just a few years, the Asian fly Drosophila suzukii has invaded several continents and has become a very serious pest of many fruit crops worldwide. Current control methods rely on chemical insecticides or expensive and labour‐intensive cultural practices. Classical biological control through the introduction of Asian parasitoids that have co‐evolved with the pest may provide a sustainable solution on condition that they are sufficiently specific to avoid non‐target effects on local biodiversity. Here, we present the first study on the development of three larval parasitoids from China and Japan, the Braconidae Asobara japonica and the Figitidae Leptopilina japonica and Ganaspis sp., on D. suzukii. The Asian parasitoids were compared with Leptopilina heterotoma, a common parasitoid of several Drosophilidae worldwide. The three Asian species were successfully reared on D. suzukii larvae in both, blueberry and artificial diet, in contrast to L. heterotoma whose eggs and larvae were encapsulated by the host larvae. All parasitoids were able to oviposit one day after emergence. Asobara japonica laid as many eggs in larvae feeding in blueberry as in artificial diet, whereas L. heterotoma oviposited more in larvae on the artificial diet and the Asian Figitidae oviposited more in larvae feeding on blueberry. Ganaspis sp. laid very few eggs in larvae in the artificial diet, suggesting that it may be specialized in Drosophila species living in fresh fruits. These data will be used for the development of a host range testing to assess the suitability of Asian parasitoids as biological control agents in invaded regions.  相似文献   

15.
The invasion of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) has caused severe economic damage in crops in North America and Europe, motivating research to identify its natural enemies, both in native and invaded areas. In its Asian native range, the main natural enemies are egg parasitoids, among which the most effective are Trissolcus japonicus (Ashmead) and Trissolcus mitsukurii (Ashmead) (Hymenoptera: Scelionidae) in China and Japan, respectively. In Europe, biology, host range, and impact of most native scelionid species are not well‐known. The present study aimed to investigate (1) presence and abundance of scelionid species that parasitize native Pentatomidae and Scutelleridae eggs in Northwest Italy, and (2) their ability to develop on H. halys eggs. During 4‐year field surveys, egg masses were collected and reared until bug nymph or adult parasitoid emergence. Then, the obtained scelionid females were tested for their ability to parasitize H. halys eggs in laboratory no‐choice experiments. Egg masses of all collected bug species were parasitized, and Telenomus spp. (Hymenoptera: Scelionidae), Trissolcus belenus (Walker), and Anastatus bifasciatus (Geoffroy) (Hymenoptera: Eupelmidae) were the most common parasitoids. In the laboratory, Trissolcus kozlovi Rjachovskij was the only species to significantly produce offspring from fresh H. halys eggs, whereas all tested Trissolcus species significantly induced host egg abortion (non‐reproductive effects). This study provides knowledge of the parasitoid species associated with native bugs, and represents a starting point to investigate the intricate interactions between native and exotic parasitoids recently found in northern Italy. These egg parasitoids could potentially be effective biocontrol agents of H. halys.  相似文献   

16.
The direction of flight of natural populations of Phradis interstitialis (Thomson), Tersilochus obscurator Aubert (both Hymenoptera: Ichneumonidae), and Platygaster subuliformis (Kieffer) (Hymenoptera: Platygastridae), parasitoids of three crucifer‐specialist herbivores, to and from their hosts’ host plant [oilseed rape, Brassica napus L. (Brassicaceae)] was studied in the field within a heterogeneous arable environment. Double‐sided Malaise traps encircling a plot of winter oilseed rape (cultivar Lutin) were used to sample the parasitoids as they flew towards and away from the plot during spring and summer. Daily trap catch of parasitoids and trap air flow were compared using Spearman's rank correlation. For all 14 insect days analysed, and for each species, the correlations between daily catch of parasitoids into distal halves of traps (relative to the plot) and wind direction were negative, significantly so on half the days analysed. This confirmed that flights towards the plot were by upwind anemotaxis. In contrast, the correlations between daily catch of parasitoids into proximal halves of traps (relative to the plot) and wind direction were most often crosswind; they were never strongly nor significantly either negative or positive. Implications of the results for integrated pest management strategies incorporating biological control with these parasitoids are discussed.  相似文献   

17.
Unlike other Drosophila species, the invasive Drosophila suzukii Matsumura (Diptera: Drosophilidae) shows a remarkable pest status. Among the physiological traits that may explain the high level of resistance to parasitoids of Drosophila larvae, the haemocyte load is shown repeatedly to play an important role. To determine whether haemocyte load can explain immunity resistance of D. suzukii to parasitoids, the haemocytes of parasitized and healthy larvae are quantified in two Japanese and three French populations of D. suzukii. Parasitization tests are conducted with two larval parasitoids: the paleartic Leptopilina heterotoma Thomson (Hymenoptera: Figitidae) and the Asian Asobara japonica Belokobylskij (Hymenoptera: Braconidae). Based on morphological and functional criteria, D. suzukii has classes of haemocytes similar to those described in Drosophila melanogaster. However, healthy larvae of the five populations tested possess particularly large numbers of haemocytes compared with D. melanogaster. Haemocyte load is also higher in larvae from the French populations than in the Japanese strains. The ability of D. suzukii larvae to encapsulate eggs of L. heterotoma is associated with a particularly high load of circulating haemocytes. However, it is notable that A. japonica induces a strong depression of the haemocyte population in this resistant host associated with an inability to encapsulate parasitoid eggs. The results show that the cellular immune system plays a major role in the failure of larval parasitoids to develop in most instances in larvae of D. suzukii, possibly contributing to the success of this species as an invader.  相似文献   

18.
Little is known of the biology of most insects that are endemic to prairie ecosystems of North America, with the exception of large and conspicuous species. In particular, species that are sequestered within plant tissues are commonly overlooked. In this paper, we assess the biodiversity of endophytic insects that inhabit stems of Silphium laciniatum L. and S. terebinthinaceum Jacquin (Asteraceae), endemic plants of tallgrass prairies. Endophytic herbivores, gall wasps Antistrophus rufus Gillette and A. minor Gillette (Hymenoptera: Cynipidae) and stem-boring larvae of the beetle Mordellistena aethiops Smith (Coleoptera: Mordellidae) were attacked by 10 species of natural enemies. We report new host plant associations for herbivores, and new host insect associations for parasitoids. The two plant species differed significantly in their densities of gall wasps and the vertical dispersion of galls within stems. Interactions within and between trophic levels attest to the biodiversity of endophytic insect communities, and the specialized nature of these insects suggests they are highly vulnerable to habitat conservation practices that involve destruction of dead vegetation.  相似文献   

19.
1. Interspecific competition among hymenopteran parasitoids may shape their behavioural strategies for host resource exploitation. In order to reduce or prevent competition, many parasitoid species have evolved the ability to discriminate between unparasitised hosts and hosts parasitised by another parasitoid species (i.e. heterospecific host discrimination). However, discriminatory ability might be affected by host instar. 2. This study reports the first results on whether host instar can influence the use of heterospecific‐parasitised hosts by sympatric parasitoids of the genus Aphytis (Hymenoptera: Aphelinidae). 3. Aphytis melinus and Aphytis chrysomphali discriminated between unparasitised and heterospecific‐parasitised hosts when they found a third‐instar host (high quality), with a tendency to multi‐parasitise. However, this discrimination was not observed in the second instar (lower size). 4. The behavioural strategies adopted towards multi‐parasitise third‐instar hosts varied between both species. Aphytis chrysomphali reduced its clutch size in heterospecific‐parasitised hosts, whereas A. melinus tended to probe them for longer than healthy hosts. 5. Overall, our results highlight the importance of host instar in the study of intrinsic competition between parasitoids.  相似文献   

20.
Massicus raddei Blessig (Coleoptera: Cerambycidae), also referred to as the oak long‐horned beetle (OLB), is a non‐natural host for the generalist parasitoid Sclerodermus pupariae Yang et Yao (Hymenoptera: Bethylidae). To determine whether this generalist parasitoid might be a suitable agent for the control of OLB, the adaptive learning experience of adult female parasitoids to OLB larvae was investigated in the laboratory. A Y‐tube olfactometer bioassay was used to examine the effects of adaptive learning experience on the foraging ability of parasitoids for OLB larvae. The results indicated that parasitoids were significantly attracted by the volatiles of ash bark, Fraxinus velutina, with emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae and larval frass, after exposure to ash bark mixed with EAB larval frass (learning condition A). In contrast, after exposure to oak bark, Quercus liaotungensis, mixed with OLB larval frass (learning condition C), parasitoids showed significant preference for the volatiles of oak bark with OLB larvae and larval frass. On the basis of the results of no‐choice tests, we found that parasitoids exposed to learning condition C had greater paralysis efficiency and higher OLB larvae parasitism rates than those exposed to learning condition A or no experience. Furthermore, parasitoids fed on OLB larvae in learning condition C had significantly greater paralysis efficiency and higher OLB larvae parasitism rates than other parasitoids tested. Parasitoids fed on EAB larvae in learning condition A had the lowest paralysis efficiency and OLB larvae parasitism rates among the parasitoids tested. These findings suggested that adaptive learning significantly enhanced the ability of a generalist parasitoid to utilize a novel host. This may provide a new approach to controlling non‐natural hosts using generalist parasitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号