首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel keto ester reductase (Chlorella sorokiniana keto ester reductase, CSKER) from Chlorella sorokiniana SAG 211-8k cells was purified. The CSKER had a monomeric structure based on gel filtration chromatography (37 kDa) and SDS–polyacrylamide gel electrophoresis (34 kDa). The purified CSKER showed a high reducing activity with β-keto esters, in particular, ethyl 4-chloro-3-oxobutanoate and ethyl 2-chloro-3-oxobutanoate. However, the purified enzyme did not show any reducing activity with α-keto esters and 2-chlorobenzoylformamide (aromatic α-keto amide). The CSKER catalyzed the reduction of ethyl 4-chloro-3-oxobutanoate, ethyl 3-oxobutanoate, and methyl 3-oxobutanoate to the corresponding (R)-, (S)-, and (S)-hydroxy ester, respectively, with high enantioselectivity (>99% e.e.), respectively. Furthermore, the reduction of ethyl 2-methyl-3-oxobutanoate by CSKER exclusively yielded the corresponding syn-(2R, 3S)-hydroxy ester. The purified CSKER was inactive with NADH, used instead of NADPH. None of the keto ester-reducing enzymes already isolated from other microorganisms was identical to the CSKER. These results suggested that CSKER is a novel keto ester reductase that has not yet been reported.  相似文献   

2.
An NADPH-dependent carbonyl reductase (S1) isolated from Candida magnoliae catalyzed the reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate (CHBE), with a 100% enantiomeric excess, which is a useful chiral building block for the synthesis of pharmaceuticals. The gene encoding the enzyme was cloned and sequenced. The S1 gene comprises 849 bp and encodes a polypeptide of 30,420 Da. The deduced amino acid sequence showed a high degree of similarity to those of the other members of the short-chain alcohol dehydrogenase superfamily. The S1 gene was overexpressed in Escherichia coli under the control of the lac promoter. The enzyme expressed in E. coli was purified to homogeneity and had the same catalytic properties as the enzyme from C. magnoliae did. An E. coli transformant reduced COBE to 125 g/l of (S)-CHBE, with an optical purity of 100% enantiomeric excess, in an organic solvent two-phase system.  相似文献   

3.
An NADPH-dependent aldehyde reductase was purified to homogeneity from Candida magnoliae AKU4643 through four steps, including Blue-Sepharose affinity chromatography. The relative molecular mass of the enzyme was estimated to be 33,000 on high performance gel-permeation chromatography and 35,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The substrate specificity of the enzyme was broad and resembled those of other aldo–keto reductases. The partial amino acid sequences of the enzyme showed that it belongs to the aldo–keto reductase superfamily. The enzyme catalyzed the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to the corresponding (R)-alcohol, with a 100% enantiomeric excess. The enzyme was inhibited by 1 mM quercetin, CuSO4, ZnSO4 and HgCl2. The thermostability of the enzyme was inferior to that of the (S)-CHBE-producing enzyme from the same strain.  相似文献   

4.
A novel short-chain dehydrogenases/reductases superfamily (SDRs) reductase (PsCR) from Pichia stipitis that produced ethyl (S)-4-chloro-3-hydroxybutanoate with greater than 99% enantiomeric excess, was purified to homogeneity using fractional ammonium sulfate precipitation followed by DEAE-Sepharose chromatography. The enzyme purified from recombinant Escherichia coli had a molecular mass of about 35 kDa on SDS–PAGE and only required NADPH as an electron donor. The Km value of PsCR for ethyl 4-chloro-3-oxobutanoate was 4.9 mg/mL and the corresponding Vmax was 337 μmol/mg protein/min. The catalytic efficiency value was the highest ever reported for reductases from yeasts. Moreover, PsCR exhibited a medium-range substrate spectrum toward various keto and aldehyde compounds, i.e., ethyl-3-oxobutanoate with a chlorine substitution at the 2 or 4-position, or α,β-diketones. In addition, the activity of the enzyme was strongly inhibited by SDS and β-mercaptoethanol, but not by ethylene diamine tetra acetic acid.  相似文献   

5.
The asymmetric biosynthesis of ethyl (S)-4-chloro-3-hydrobutanoate from ethyl 4-chloro-3-oxobutanoate was investigated by using whole cells ofCandida magnoliae JX120-3 without the addition of glucose dehydrogenase or NADP+/NADPH. In a one-phase system, the bioconversion yield was seriously affected on the addition of 12.1 g/L ethyl 4-chloro-3-oxobutanoate. In order to reduce this substrate inhibition, a water/n-butyl acetate two-phase system was developed, and the bioreduction conditions optimized with regard to the yield and product enantiometric excess value. The optimal conditions were as following: water ton-butyl acetate volume ratio of 1∶1, 4.0 g DCW/L active cells, 50 g/L glucose and 35°C. By adopting a dropwise substrate feeding strategy, high concentration of ethyl 4-chloro-3-oxobutanoate (60 g/L) could be asymmetrically reduced to ethyl (S)-4-chloro-3-hydrobutanoate with high yield (93.8%) and high enantiometric excess value (92.7%).  相似文献   

6.
Phenylacetaldehyde reductase (PAR) produced by styrene-assimilating Corynebacterium strain ST-10 was used to synthesize chiral alcohols. This enzyme with a broad substrate range reduced various prochiral aromatic ketones and beta-ketoesters to yield optically active secondary alcohols with an enantiomeric purity of more than 98% enantiomeric excess (e.e.). The Escherichia coli recombinant cells which expressed the par gene could efficiently produce important pharmaceutical intermediates; (R)-2-chloro-1-(3-chlorophenyl)ethanol (28 mg.mL-1) from m-chlorophenacyl chloride, ethyl (R)-4-chloro-3-hydroxy butanoate) (28 mg.mL-1) from ethyl 4-chloro-3-oxobutanoate and (S)-N-tert-butoxycarbonyl(Boc)-3-pyrrolidinol from N-Boc-3-pyrrolidinone (51 mg.mL-1), with more than 86% yields. The high yields were due to the fact that PAR could concomitantly reproduce NADH in the presence of 3-7% (v/v) 2-propanol in the reaction mixture. This biocatalytic process provided one of the best asymmetric reductions ever reported.  相似文献   

7.
The synthesis of optically active ethyl 4-chloro-3-X-butanoate derivatives la-d (X = OH, a; OCOCH3, b; OCOC3H7, c; OCH2C6H5, d) was realized using various biocatalytic approaches such as microbiological reduction of ethyl 4-chloro-3-oxobutanoate 2 with lactic acid bacteria, hydrolysis of lb-d by the hydrolytic enzymes PLE and BChE and the transesterification of la catalyzed by a lipase from Pseudomonas fluorescens (PFL).  相似文献   

8.
An NAD(+)-dependent alcohol dehydrogenase was purified to homogeneity from Nocardia fusca AKU 2123. The enzyme catalyzed (S)-specific oxidation of 3-pentyn-2-ol (PYOH), i.e., part of the stereoinversion reaction for the production of (R)-PYOH, which is a valuable chiral building block for pharmaceuticals, from the racemate. The enzyme used a broad variety of secondary alcohols including alkyl alcohols, alkenyl alcohols, acetylenic alcohols, and aromatic alcohols as substrates. The oxidation was (S)-isomer specific in every case. The K(m) and Vmax for (S)-PYOH and (S)-2-hexanol oxidation were 1.6 mM and 53 mumol/min/mg, and 0.33 mM and 130 mumol/min/mg, respectively. The enzyme also catalyzed stereoselective reduction of carbonyl compounds. (S)-2-Hexanol and ethyl (R)-4-chloro-3-hydroxybutanoate in high optical purity were produced from 2-hexanone and ethyl 4-chloro-3-oxobutanoate by the purified enzyme, respectively. The K(m) and Vmax for 2-hexanone reduction were 2.5 mM and 260 mumol/min/mg. The enzyme has a relative molecular mass of 150,000 and consists of four identical subunits. The NH2-terminal amino acid sequence of the enzyme shows similarity with those of the carbonyl reductase from Rhodococcus erythropolis and phenylacetaldehyde reductase from Corynebacterium sp.  相似文献   

9.
The distribution of microbial aldo-keto reductases was examined and their immunochemical characterization was performed. p-Nitrobenzaldehyde, pyridine-3-aldehyde and ethyl 4-chloro-3-oxobutanoate reductase activities were found to be widely distributed in a variety of microorganisms. In immunodiffusion studies, most yeasts belonging to the genera Sporobolomyces, Sporidiobolus and Rhodotorula formed precipitin bands with anti-Sporobolomyces salmonicolor aldehyde reductase serum. Furthermore, the results of immunotitration experiments suggested that Sporobolomyces salmonicolor AKU 4429 contains other enzyme(s) which can reduce p-nitrobenzaldehyde, pyridine-3-aldehyde and/or ethyl 4-chloro-3-oxobutanoate, and which are inactivated by anti-Sporobolomyces salmonicolor aldehyde reductase serum.  相似文献   

10.
Enzyme-catalyzed asymmetric reduction of ethyl 4-chloro-3-oxobutanoate in an organic solvent-water diphasic system was studied. NADPH-dependent aldehyde reductase isolated from Sporobolomyces salmonicolor AKU4429 and glucose dehydrogenase were used as catalysts for reduction of ethyl 4-chloro-3-oxobutanoate and recycling of NADPH, respectively, in this system. In an aqueous system, the substrate was unstable. Inhibition of the reaction and inactivation of the enzymes by the substrate and the product were also observed. An n-butyl acetate-water diphasic system very efficiently overcame these limitations. In a 1,600-ml−1,600-ml scale diphasic reaction, ethyl (R)-4-chloro-3-hydroxybutanoate (0.80 mol; 86% enantiomeric excess) was produced from the corresponding oxoester in a molar yield of 95.4% with an NADPH turnover of 5,500 mol/mol.  相似文献   

11.
An NADPH-dependent aldehyde reductase (ALR, EC1.1.1.2) gene is cloned from Sporobolomyces salmonicolor ZJUB 105, and inserted into plasmid pQE30 to construct the expression plasmid (pQE30-ALR). A variety of E. coli strains were employed as hosts to obtain transformants with pQE30-ALR, respectively. Among these different types of transformants, the highest enzyme activity of ALR can be produced with E. coli M15 (pQE30-ALR). The bioactivity of ALR could be further improved significantly by the optimization of induction conditions. The results showed that the enzyme activity of ALR reached 6.48 U/mg protein, which is fifteen times higher than that of S. salmonicolor ZJUB 105. This recombinant strain was applied to the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (R)-4-chloro-3- hydroxybutanoate (CHBE). The results showed that the yield and optical purity of (R)-CHBE reached 98.5% and 99% e.e. (enantiomeric excess), respectively.  相似文献   

12.
The synthesis of optically active ethyl 4-chloro-3-X-butanoate derivatives la-d (X = OH, a; OCOCH3, b; OCOC3H7, c; OCH2C6H5, d) was realized using various biocatalytic approaches such as microbiological reduction of ethyl 4-chloro-3-oxobutanoate 2 with lactic acid bacteria, hydrolysis of lb-d by the hydrolytic enzymes PLE and BChE and the transesterification of la catalyzed by a lipase from Pseudomonas fluorescens (PFL).  相似文献   

13.
【目的】研究羰基还原酶基因的克隆、表达及其在不对称生物催化中的应用。【方法】对羰基还原酶氨基酸序列进行BLAST推导出核苷酸序列,设计引物,以马克斯克鲁维酵母(Kluyveromyce marxianus)CGMCC 2.1977全基因组为模板,通过PCR扩增目的片段,与载体pET-28a连接,转化大肠杆菌获得重组菌BL21(DE3)-(pET28a-cMCR)和Rosetta(DE3)-(pET28a-cMCR)。【结果】扩增的序列与已报道的mer序列有100%同源性,全长1 038 bp,共编码345个氨基酸。目的蛋白在Rosetta(DE3)-(pET28a-cMCR)得到了高效表达,大小为42 kD。该酶最适反应温度为40°C,最适反应pH是8,热稳定性与pH稳定性较差。Ca2+对酶活具有明显的激活作用,且浓度为0.5 mmol/L时效果最好。重组菌可还原4-氯乙酰乙酸乙酯(COBE)为(S)-4-氯-3-羟基丁酸乙酯[(S)-CHBE],光学纯度为100%,转化率为81.0%。重组菌在制备度洛西汀关键中间体(S)-氮,氮-二甲基-3-羟基-(2-噻吩)-l-丙胺[(S)-DHTP]中也得到初步应用。【结论】从菌株马克斯克鲁维酵母(Kluyveromyce marxianus)CGMCC 2.1977中克隆获得了羰基还原酶基因,在大肠杆菌中成功表达,并可应用于不对称还原。  相似文献   

14.
Cao H  Mi L  Ye Q  Zang G  Yan M  Wang Y  Zhang Y  Li X  Xu L  Xiong J  Ouyang P  Ying H 《Bioresource technology》2011,102(2):1733-1739
A novel NADH-dependent dehydrogenases/reductases (SDRs) superfamily reductase (PsCRII) was isolated from Pichia stipitis. It produced ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE] in greater than 99% enantiomeric excess. This enzyme was purified to homogeneity by ammonium sulfate precipitation followed by Q-Sepharose chromatography. Compared to similar known reductases producing (S)-CHBE, PsCR II was more suitable for production since the purified PsCRII preferred the inexpensive cofactor NADH to NADPH as the electron donor. Furthermore, the Km of PsCRII for ethyl 4-chloro-3-oxobutanoate (COBE) was 3.3 mM, and the corresponding Vmax was 224 μmol/mg protein/min. The catalytic efficiency is the highest value ever reported for NADH-dependent reductases from yeasts that produce CHBE with high enantioselectivity. In addition, this enzyme exhibited broad substrate specificity for several β-keto esters using NADH as the coenzyme. The properties of PsCRII with those of other carbonyl reductases from yeasts were also compared in this study.  相似文献   

15.
The gene encoding an NADPH-dependent menadione reductase of Candida macedoniensis AKU4588 was cloned and sequenced. A 1035 bp nucleotide fragment (mer) was confirmed to be the gene encoding the enzyme based on the agreement of N-terminal and internal amino acid sequences. The mer encodes 345 amino acid residues, and the deduced amino acid sequence shows high similarity with those of hypothetical proteins from Debaryomyces, Candida and Saccharomyces, and ketoreductase from Zygosaccharomyces. It includes NADPH-binding motif GXXGXXA in its N-terminal region. These findings suggest that the enzyme belongs to the dihydroflavonol-4-reductase superfamily. An expression vector, pETMER, which contains the full length of the mer, was constructed. Escherichia coli cells harboring pETMER exhibits a 127-fold increase in specific menadione-reducing activity under the control of T7 promoter as compared with that of C. macedoniensis.

The asymmetric reduction of 4-chloro-3-oxobutanoate ethyl ester to (S)-4-chloro-3-hydroxybutanoate ethyl ester (CHBE) with E. coli cells, in which both the mer and the glucose dehydrogenase gene were co-expressed, as a catalyst was investigated. The (S)-CHBE formed amounted to 1680 mM (281 mg/ml), the molar yield being 92.2%. The optical purity of the product was 91.6% enantiomeric excess for the (S)-isomer. The calculated turnover number of NADP+ added to CHBE formed was 12,900 mol/mol.  相似文献   


16.
We cloned and sequenced the gene encoding an NADPH-dependent aldehyde reductase (ARII) in Sporobolomyces salmonicolor AKU4429, which reduces ethyl 4-chloro-3-oxobutanoate (4-COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate. The ARII gene is 1,032 bp long, is interrupted by four introns, and encodes a 37,315-Da polypeptide. The deduced amino acid sequence exhibited significant levels of similarity to the amino acid sequences of members of the mammalian 3beta-hydroxysteroid dehydrogenase-plant dihydroflavonol 4-reductase superfamily but not to the amino acid sequences of members of the aldo-keto reductase superfamily or to the amino acid sequence of an aldehyde reductase previously isolated from the same organism (K. Kita, K. Matsuzaki, T. Hashimoto, H. Yanase, N. Kato, M. C.-M. Chung, M. Kataoka, and S. Shimizu, Appl. Environ. Microbiol. 62:2303-2310, 1996). The ARII protein was overproduced in Escherichia coli about 2, 000-fold compared to the production in the original yeast cells. The enzyme expressed in E. coli was purified to homogeneity and had the same catalytic properties as ARII purified from S. salmonicolor. To examine the contribution of the dinucleotide-binding motif G(19)-X-X-G(22)-X-X-A(25), which is located in the N-terminal region, during ARII catalysis, we replaced three amino acid residues in the motif and purified the resulting mutant enzymes. Substrate inhibition of the G(19)-->A and G(22)-->A mutant enzymes by 4-COBE did not occur. The A(25)-->G mutant enzyme could reduce 4-COBE when NADPH was replaced by an equimolar concentration of NADH.  相似文献   

17.
Zygosaccharomyces rouxii catalysed the reduction of ethyl 4-chloroacetoacetate (ethyl 4-chloro-3-oxobutanoate) to the corresponding (S)-hydroxy ester (ethyl (S)-4-chloro-3-hydroxybutanoate) in high enantiomeric excess. The productivity of non-immobilised cells was compared to cells immobilised on a range of organic and inorganic supports. Cells immobilised in calcium alginate displayed a catalytic activity significantly higher than that of non-immobilised cells. A time dependent fall in the enantiomeric purity of the product was observed with the use of this matrix. This phenomenon was not seen in the reduction catalysed by non-immobilised cells.  相似文献   

18.
Cultured plant cells of Marchantia polymorpha were examined for their ability to reduce beta-keto ester, 2-methyl-3-oxobutanoate. The cells reduced ethyl 2-methyl-3-oxobutanoate to predominantly yield the anti-product, ethyl (2S,3S)-3-hydroxy-2-methylbutanoate, with 92% diastereomeric excess and over 99% enantiomeric excess. The use of immobilized cells of M. polymorpha in calcium alginate gel improved the diastereomeric excess of the product (97% de). In addition, the large-scale reduction of 75 g of ethyl 2-methyl-3-oxobutanoate with immobilized M. polymorpha gave the product with 97% de and >99% ee in 92% yield.  相似文献   

19.
Summary The synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate through the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate with the NADPH-dependent aldehyde reductase ofSporobolomyces salmonicolor AKU 4429 is described. Under preparative scale reaction conditions with the acetone-fractionated aldehyde reductase, the amount of ethyl-4-chloro-3-hydroxybutanoate reached 33.1 mg/ml (85%ee; molar yield, 74.0%). Furthermore, conversion to ethyl (S)-4-chloro-3-hydroxybutanoate occurred on incubation with washed cells ofTrichosporon cutaneum AKU 4864 as the catalyst.  相似文献   

20.
Six yeasts were studied for their ability to reduce ethyl 4-chloroacetoacetate (ethyl 4-chloro-3-oxobutanoate) stereoselectively. Five species reduced the substrate to ethyl (S)-4-chloro-3-hydroxybutanoate of high (92–99%) optical purity. With glucose-grown cells, substrate reduction could only be demonstrated when growth was oxygen-limited, whereas xylose-grown Pichia capsulata could be grown under conditions of oxygen excess without losing its reducing ability. Zygosaccha-romyces rouxii exhibited high enantioselectivity (≥98% ee (S)-enantiomer) under all conditions tested, whilst in P. capsulata, a novel switch was observed from producing mainly the (R)-enantiomer using glucose as co-substrate to producing mainly the (R)-enantiomer using 2-propanol as co-substrate. This switch was correlated with a change in reduction predominantly from an NADPH-dependent dehydrogenase system to an NADH-dependent system. In the production of ethyl (R)-4-chloro-3-hydroxybutanoate with P. capsulata, the enantioselectivity was also found to depend upon growth conditions. With glucose-grown cells, higher enantioselectivity was observed using cells harvested in stationary phase (93–94% ee) compared with cells harvested in exponential phase (43–60% ee). Growing P. capsulata with xylose rather than glucose as the major source of carbon for growth resulted in an eight-fold increase in the specific rate of ethyl (R)-4-chloro-3-hydroxybutanoate production using 2-propanol as co-substrate, although enantioselectivity was slightly reduced (65–81% ee) compared with the maximum achieved with glucose-grown cells. The effect of growth on xylose could also be correlated with enhanced activity of an NADH-dependent (R)-selective dehydrogenase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号