首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The Legionella pneumophila protein AnkX that is injected into infected cells by a Type IV secretion system transfers a phosphocholine group from CDP-choline to a serine in the Rab1 and Rab35 GTPase Switch II regions. We show here that the consequences of phosphocholination on the interaction of Rab1/Rab35 with various partner proteins are quite distinct. Activation of phosphocholinated Rabs by GTP/GDP exchange factors (GEFs) and binding to the GDP dissociation inhibitor (GDI) are strongly inhibited, whereas deactivation by GTPase activating proteins (GAPs) and interactions with Rab-effector proteins (such as LidA and MICAL-3) are only slightly inhibited. We show that the Legionella protein lpg0696 has the ability to remove the phosphocholine group from Rab1. We present a model in which the action of AnkX occurs as an alternative to GTP/GDP exchange, stabilizing phosphocholinated Rabs in membranes in the GDP form because of loss of GDI binding ability, preventing interactions with cellular GTPase effectors, which require the GTP-bound form. Generation of the GTP form of phosphocholinated Rab proteins cannot occur due to loss of interaction with cellular GEFs.  相似文献   

2.
GTPases of the Rab family cycle between an inactive (GDP‐bound) and active (GTP‐bound) conformation. The active form of the Rab regulates a variety of cellular functions via multiple effectors. Guanine nucleotide exchange factors (GEFs) activate Rabs by accelerating the exchange of GDP for GTP, while GTPase activating proteins (GAPs) inactivate Rabs by stimulating the hydrolysis of GTP. The GTPase Ypt1p is required for endoplasmic reticulum (ER)–Golgi and intra‐Golgi traffic in the yeast Saccharomyces cerevisiae. Recent findings, however, have shown that Ypt1p GEF, GAP and an effector are all required for traffic from the early endosome to the Golgi. Here we describe a screen for ypt1 mutants that block traffic from the early endosome to the late Golgi, but not general secretion. This screen has led to the identification of a collection of recessive and dominant mutants that block traffic from the early endosome. While it has long been known that Ypt1p regulates the flow of biosynthetic traffic into the cis side of the Golgi, these findings have established a role for Ypt1p in the regulation of early endosome–Golgi traffic. We propose that Ypt1p regulates the flow of traffic into the cis and trans side of the Golgi via multiple effectors.  相似文献   

3.
The Rab family belongs to the Ras‐like small GTPase superfamily and is implicated in membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs are yet to be identified. In this study, we systematically screened five different cell or tissue lysates for novel Rab effectors by a combination of glutathione S‐transferase (GST) pull‐down assay with 60 different mammalian Rabs and mass spectroscopic analysis. Three of the 21 Rab‐binding proteins we identified, mKIAA1055/TBC1D2B (Rab22‐binding protein), GAPCenA/TBC1D11 (Rab36‐binding protein) and centaurin β2/ACAP2 (Rab35‐binding protein), are GTPase‐activating proteins (GAPs) for Rab or Arf. Although it has recently been proposed that the Rab–GAP (Tre‐2 /Bub2/Cdc16) domain physically interacts with its substrate Rab, these three GAPs interacted with specific Rabs via a domain other than a GAP domain, e.g. centaurin β2 binds GTP‐Rab35 via the ankyrin repeat (ANKR) domain. Although centaurin β2 did not exhibit any Rab35–GAP activity in vitro, the Rab35‐binding ANKR domain of centaurin β2 was found to be required for its plasma membrane localization and regulation of Rab35‐dependent neurite outgrowth of PC12 cells through inactivation of Arf6. These findings suggest a novel mode of interaction between Rab and GAP.  相似文献   

4.
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1‐like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35‐dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F‐actin, both on endosomes and at the plasma membrane.   相似文献   

5.
Rab GTPases are key proteins that determine organelle identity and operate at the center of fusion reactions. Like Ras, they act as switches that are connected to a diverse network of tethering factors, exchange factors and GTPase activating proteins. Recent studies suggest that Rabs are linked to each other via their effectors, thus coordinating protein transport in the endomembrane system. Within this review, we will focus on selected examples that highlight these issues.  相似文献   

6.
Ypt/Rabs are Ras-related GTPases that function as key regulators of intracellular vesicular trafficking. Their slow intrinsic rates of GTP hydrolysis are catalyzed by GTPase-activating proteins (GAPs). Ypt/Rab-GAPs constitute a family of proteins that contain a TBC (Tre-2/Bub2/Cdc16) domain. Only three of the 51 family members predicted in the human genome are confirmed Ypt/Rab-GAPs. Here, we report the identification and characterization of a novel mammalian Ypt/Rab-GAP, TBC domain family, member 15 (TBC1D15). TBC1D15 is ubiquitously expressed and localized predominantly to the cytosol. The TBC domain of TBC1D15 exhibits relatively high homology with that of Gyp7p, a yeast Ypt/Rab-GAP. Furthermore, TBC1D15 stimulates the intrinsic GTPase activity of Rab7, and to a lesser extent Rab11, but is essentially inactive towards Rab4 or Rab6. These data increase the number of mammalian TBC domain family members with demonstrated Rab-GAP activity to four, and suggest that TBC1D15 may be involved in Rab7-mediated late endosomal trafficking.  相似文献   

7.
Small GTPases of the Rho family (RhoA, Rac1, and Cdc42) and the Ras family GTPase Rap1 are essential for the assembly and function of epithelial cell-cell junctions. Through their downstream effectors, small GTPases modulate junction formation and stability, primarily by orchestrating the polymerization and contractility of the actomyosin cytoskeleton. The major upstream regulators of small GTPases are guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Several GEFs and a few GAPs have been localized at epithelial junctions, and bind to specific junctional proteins. Thus, junctional proteins can regulate small GTPases at junctions, through their interactions with GEFs and GAPs. Here we review the current knowledge about the mechanisms of regulation of small GTPases by junctional proteins. Understanding these mechanisms will help to clarify at the molecular level how small GTPases control the morphogenesis and physiology of epithelial tissues, and how they are disregulated in disease.  相似文献   

8.
《Molecular membrane biology》2013,30(7-8):427-444
Abstract

Small GTPases of the Rho family (RhoA, Rac1, and Cdc42) and the Ras family GTPase Rap1 are essential for the assembly and function of epithelial cell-cell junctions. Through their downstream effectors, small GTPases modulate junction formation and stability, primarily by orchestrating the polymerization and contractility of the actomyosin cytoskeleton. The major upstream regulators of small GTPases are guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Several GEFs and a few GAPs have been localized at epithelial junctions, and bind to specific junctional proteins. Thus, junctional proteins can regulate small GTPases at junctions, through their interactions with GEFs and GAPs. Here we review the current knowledge about the mechanisms of regulation of small GTPases by junctional proteins. Understanding these mechanisms will help to clarify at the molecular level how small GTPases control the morphogenesis and physiology of epithelial tissues, and how they are disregulated in disease.  相似文献   

9.
Endocytosis is a multistep process engaged in extracellular molecules internalization. Several proteins including the Rab GTPases family coordinate the endocytic pathway. The small GTPase Rab7 is present in late endosome (LE) compartments being a marker of endosome maturation. The Rab interacting lysosomal protein (RILP) is a downstream effector of Rab7 that recruits the functional dynein/dynactin motor complex to late compartments. In the present study, we have found Rab24 as a component of the endosome‐lysosome degradative pathway. Rab24 is an atypical protein of the Rab GTPase family, which has been attributed a function in vesicle trafficking and autophagosome maturation. Using a model of transiently expressed proteins in K562 cells, we found that Rab24 co‐localizes in vesicular structures labeled with Rab7 and LAMP1. Moreover, using a dominant negative mutant of Rab24 or a siRNA‐Rab24 we showed that the distribution of Rab7 in vesicles depends on a functional Rab24 to allow DQ‐BSA protein degradation. Additionally, by immunoprecipitation and pull down assays, we have demonstrated that Rab24 interacts with Rab7 and RILP. Interestingly, overexpression of the Vps41 subunit from the homotypic fusion and protein‐sorting (HOPS) complex hampered the co‐localization of Rab24 with RILP or with the lysosomal GTPase Arl8b, suggesting that Vps41 would affect the Rab24/RILP association. In summary, our data strongly support the hypothesis that Rab24 forms a complex with Rab7 and RILP on the membranes of late compartments. Our work provides new insights into the molecular function of Rab24 in the last steps of the endosomal degradative pathway.   相似文献   

10.
Endocytosis is a crucial process in eukaryotic cells. The GTPases Rab 5, 21 and 22 that mediate endocytosis are ancient eukaryotic features and all available evidence suggests retained conserved function. In animals and fungi, these GTPases are regulated in part by proteins possessing Vps9 domains. However, the diversity, evolution and functions of Vps9 proteins beyond animals or fungi are poorly explored. Here we report a comprehensive analysis of the Vps9 family of GTPase regulators, combining molecular evolutionary data with functional characterization in the non‐opisthokont model organism Trypanosoma brucei. At least 3 subfamilies, Alsin, Varp and Rabex5 + GAPVD1, are found across eukaryotes, suggesting that all are ancient features of regulation of endocytic Rab protein function. There are examples of lineage‐specific Vps9 subfamily member expansions and novel domain combinations, suggesting diversity in precise regulatory mechanisms between individual lineages. Characterization of the Rabex5 + GAPVD1 and Alsin orthologues in T. brucei demonstrates that both proteins are involved in endocytosis, and that simultaneous knockdown prevents membrane recruitment of Rab5 and Rab21, indicating conservation of function. These data demonstrate that, for the Vps9‐domain family at least, modulation of Rab function is mediated by evolutionarily conserved protein‐protein interactions.   相似文献   

11.
VARP (VPS9‐ankyrin‐repeat protein, also known as ANKRD27) was originally identified as an N‐terminal VPS9 (vacuolar protein sorting 9)‐domain‐containing protein that possesses guanine nucleotide exchange factor (GEF) activity toward small GTPase Rab21 and contains two ankyrin repeat (ANKR) domains in its central region. A number of VARP‐interacting molecules have been identified during the past five years, and considerable attention is now being directed to the multiple roles of VARP in endosomal trafficking. More specifically, VARP is now known to interact with three different types of key membrane trafficking regulators, i.e. small GTPase Rabs (Rab32, Rab38 and Rab40C), the retromer complex (a sorting nexin dimer, VPS26, VPS29 and VPS35) and R‐SNARE VAMP7. By binding to several of these molecules, VARP regulates endosomal trafficking, which underlies a variety of cellular events, including melanogenic enzyme trafficking to melanosomes, dendrite outgrowth of melanocytes, neurite outgrowth and retromer‐mediated endosome‐to‐plasma membrane sorting of transmembrane proteins.   相似文献   

12.
Membrane fusion at eukaryotic organelles is initiated by Rab GTPases and tethering factors. Rabs in their GDP-bound form are kept soluble in the cytoplasm by the GDP dissociation inhibitor (GDI) chaperone. Guanine nucleotide exchange factors (GEFs) are found at organelles and are critical for Rab function. Here, we surveyed the overall role of GEFs in Rab localization. We show that GEFs, but none of the proposed GDI displacement factors, are essential for the correct membrane localization of yeast Rabs. In the absence of the GEF, Rabs lost their primary localization to the target organelle. Several Rabs, such as vacuolar Ypt7, were found at the endoplasmic reticulum and thus were still membrane-bound. Surprisingly, a Ypt7 mutant that undergoes facilitated nucleotide exchange localized to vacuoles independently of its GEF Mon1-Ccz1 and rescued vacuole morphology. In contrast, wild-type Ypt7 required its GEF for localization and to counteract the extraction by GDI. Our data agree with the emerging model that GEFs are critical for Rab localization but raise the possibility that additional factors can contribute to this process.  相似文献   

13.
Giantin interacts with both the small GTPase Rab6 and Rab1   总被引:1,自引:0,他引:1  
The interaction of small GTPases of the Rab family and coiled coil proteins of the golgin family has been reported for example for the Rab1 GTPase and p115, GM130 and Giantin. We now show that Rab6A, a GTPase that controls retrograde trafficking within the Golgi back to the endoplasmic reticulum is also able to bind to Giantin in vivo and in vitro pointing to an interesting complex formation between Giantin and two different Rab GTPases. In Saccharomyces cerevisiae a genetic interaction between Ypt1 and Ypt6 has already been demonstrated, but in this paper we were able to describe that the mammalian Rab GTPases are able to interact on the same golgin protein, Giantin.  相似文献   

14.
Rab蛋白构成小G蛋白超家族中最大的1个家族,广泛存在于动物、植物和微生物中.Rab调控细胞内的囊泡形成、转运、锚定及囊泡与质膜的融合等过程,在细胞内吞和分泌途径中发挥分子开关的作用.不同生物中Rab的结构和作用机制非常保守,但Rab的分类和生理学功能存在差异.植物Rab不仅行使类似于动物或微生物同源Rab的细胞学功能,而且在植物生长发育、激素信号调节、生物或非生物胁迫应答等方面表现出功能特异性.本文结合近年的研究进展,对植物Rab的分类、结构、调节机制和功能进行了综述,并对当前植物Rab功能研究的难点和方向进行了
讨论.  相似文献   

15.
GDP‐bound prenylated Rabs, sequestered by GDI (GDP dissociation inhibitor) in the cytosol, are delivered to destined sub‐cellular compartment and subsequently activated by GEFs (guanine nucleotide exchange factors) catalysing GDP‐to‐GTP exchange. The dissociation of GDI from Rabs is believed to require a GDF (GDI displacement factor). Only two RabGDFs, human PRA‐1 and Legionella pneumophila SidM/DrrA, have been identified so far and the molecular mechanism of GDF is elusive. Here, we present the structure of a SidM/DrrA fragment possessing dual GEF and GDF activity in complex with Rab1. SidM/DrrA reconfigures the Switch regions of the GTPase domain of Rab1, as eukaryotic GEFs do toward cognate Rabs. Structure‐based mutational analyses show that the surface of SidM/DrrA, catalysing nucleotide exchange, is involved in GDI1 displacement from prenylated Rab1:GDP. In comparison with an eukaryotic GEF TRAPP I, this bacterial GEF/GDF exhibits high binding affinity for Rab1 with GDP retained at the active site, which appears as the key feature for the GDF activity of the protein.  相似文献   

16.
Rab proteins are a large family of monomeric GTPases with 60 members identified in the human genome. Rab GTPases require an isoprenyl modification to their C-terminus for membrane association and function in the regulation of vesicular trafficking pathways. This reaction is catalysed by Rab geranylgeranyl transferase, which recognises as protein substrate any given Rab in a 1:1 complex with Rab Escort Protein (REP). REP is therefore able to bind many distinct Rab proteins but the molecular basis for this activity is still unclear. We recently identified conserved motifs in Rabs termed RabF motifs, which we proposed to mediate a conserved mode of interaction between Rabs and REPs. Here, we tested this hypothesis. We first used REP1 as a bait in the yeast two-hybrid system and isolated strictly full-length Rabs, suggesting that REP recognises multiple regions within and properly folded Rabs. We introduced point mutations in Rab3a as a model Rab and assessed the ability of the mutants to interact with REP using the yeast two-hybrid system and an in vitro prenylation assay. We identified several residues that affect REP:Rab binding in the RabF1, RabF3, and RabF4 regions (which include parts of the switch I and II regions), but not other RabF regions. These results support the hypothesis that Rabs bind REP via conserved RabF motifs and provide a molecular explanation for the preferential recognition of the GDP-bound conformation of Rab by REP.  相似文献   

17.
Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase‐activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans‐Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP‐ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross‐talk with RabGTPases.

  相似文献   


18.
Rab GTPases associated with insulin‐containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β‐cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase‐activating protein overexpression in β‐cells from wild‐type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP‐bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release‐ready SGs in β‐cells, they also direct unique kinetic and functional properties of the exocytotic pathway.   相似文献   

19.
Rab GTPases are molecular switches with essential roles in mediating vesicular trafficking and establishing organelle identity. The conversion from the inactive, cytosolic to the membrane-bound, active species and back is tightly controlled by regulatory proteins. Recently, the roles of membrane properties and lipid composition of different target organelles in determining the activity state of Rabs have come to light. The investigation of several Rab guanine nucleotide exchange factors (GEFs) has revealed principles of how the recruitment via lipid interactions and the spatial confinement on the membrane surface contribute to spatiotemporal specificity in the Rab GTPase network. This paints an intricate picture of the control mechanisms in Rab activation and highlights the importance of the membrane lipid code in the organization of the endomembrane system.  相似文献   

20.
Background information. Rab11 and Rab14 are two related Rab GTPases that are believed to function in endosomal recycling and Golgi/endosome transport processes. We, and others, have identified a group of proteins that interact with Rab11 and function as Rab11 effectors, known as the Rab11‐FIPs (family interacting proteins). This protein family has been sub‐classified into two groups—class I FIPs [FIP2, RCP (Rab coupling protein) and Rip11 (Rab11‐interacting protein)] and class II FIPs (FIP3 and FIP4). Results. In the present study we identify the class I FIPs as dual Rab‐binding proteins by demonstrating that they also interact with Rab14 in a GTP‐dependent manner. We show that these interactions are specific for the class I FIPs and that they occur via their C‐terminal regions, which encompass the previously described RBD (Rab11‐binding domain). Furthermore, we show that Rab14 significantly co‐localizes with the TfnR (transferrin receptor) and that Rab14 Q70L co‐localizes with Rab11a and with the class I FIPs on the ERC (endosomal recycling compartment) during interphase. Additionally, we show that during cytokinesis Rab14 localizes to the cleavage furrow/midbody. Conclusions. The data presented in the present study, which identifies the class I FIPs as the first putative effector proteins for the Rab14 GTPase, indicates greater complexity in the Rab‐binding specificity of the class I FIP proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号