首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several replication-initiation proteins are assembled stepwise onto replicators to form pre-replicative complexes (pre-RCs) to license eukaryotic DNA replication. We performed a yeast functional proteomic screen and identified the Rix1 complex members (Ipi1p-Ipi2p/Rix1-Ipi3p) as pre-RC components and critical determinants of replication licensing and replication-initiation frequency. Ipi3p interacts with pre-RC proteins, binds chromatin predominantly at ARS sequences in a cell cycle-regulated and ORC- and Noc3p-dependent manner and is required for loading Cdc6p, Cdt1p and MCM onto chromatin to form pre-RC during the M-to-G1 transition and for pre-RC maintenance in G1 phase-independent of its role in ribosome biogenesis. Moreover, Ipi1p and Ipi2p, but not other ribosome biogenesis proteins Rea1p and Utp1p, are also required for pre-RC formation and maintenance, and Ipi1p, -2p and -3p are interdependent for their chromatin association and function in pre-RC formation. These results establish a new framework for the hierarchy of pre-RC proteins, where the Ipi1p-2p-3p complex provides a critical link between ORC-Noc3p and Cdc6p-Cdt1p-MCM in replication licensing.  相似文献   

2.
DNA replication is a stringently regulated cellular process. In proliferating cells, DNA replication-initiation proteins (RIPs) are sequentially loaded onto replication origins during the M-to-G1 transition to form the pre-replicative complex (pre-RC), a process known as replication licensing. Subsequently, additional RIPs are recruited to form the pre-initiation complex (pre-IC). RIPs and their regulators ensure that chromosomal DNA is replicated exactly once per cell cycle. Origin recognition complex (ORC) binds to, and marks replication origins throughout the cell cycle and recruits other RIPs including Noc3p, Ipi1-3p, Cdt1p, Cdc6p and Mcm2-7p to form the pre-RC. The detailed mechanisms and regulation of the pre-RC and its exact architecture still remain unclear. In this study, pairwise protein-protein interactions among 23 budding yeast and 16 human RIPs were systematically and comprehensively examined by yeast two-hybrid analysis. This study tested 470 pairs of yeast and 196 pairs of human RIPs, from which 113 and 96 positive interactions, respectively, were identified. While many of these interactions were previously reported, some were novel, including various ORC and MCM subunit interactions, ORC self-interactions, and the interactions of IPI3 and NOC3 with several pre-RC and pre-IC proteins. Ten of the novel interactions were further confirmed by co-immunoprecipitation assays. Furthermore, we identified the conserved interaction networks between the yeast and human RIPs. This study provides a foundation and framework for further understanding the architectures, interactions and functions of the yeast and human pre-RC and pre-IC.  相似文献   

3.
The initiation of eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at chromosomal origins of DNA replication. Pre-RC assembly requires the essential DNA replication proteins ORC, Cdc6, and Cdt1 to load the MCM DNA helicase onto chromatin. Saccharomyces cerevisiae Noc3 (ScNoc3), an evolutionarily conserved protein originally implicated in 60S ribosomal subunit trafficking, has been proposed to be an essential regulator of DNA replication that plays a direct role during pre-RC formation in budding yeast. We have cloned Schizosaccharomyces pombe noc3(+) (Spnoc3(+)), the S. pombe homolog of the budding yeast ScNOC3 gene, and functionally characterized the requirement for the SpNoc3 protein during ribosome biogenesis, cell cycle progression, and DNA replication in fission yeast. We showed that fission yeast SpNoc3 is a functional homolog of budding yeast ScNoc3 that is essential for cell viability and ribosome biogenesis. We also showed that SpNoc3 is required for the normal completion of cell division in fission yeast. However, in contrast to the proposal that ScNoc3 plays an essential role during DNA replication in budding yeast, we demonstrated that fission yeast cells do enter and complete S phase in the absence of SpNoc3, suggesting that SpNoc3 is not essential for DNA replication in fission yeast.  相似文献   

4.
The yeast Ipi3p is required for DNA replication and cell viability in Sacharomyces cerevisiae. It is an essential component of the Rix1 complex (Rix1p/Ipi2p-Ipi1p-Ipi3p) that is required for the processing of 35S pre-rRNA in pre-60S ribosomal particles and for the initiation of DNA replication. The human IPI3 homolog is WDR18 (WD repeat domain 18), which shares significant homology with yIpi3p. Here we report that knockdown of hIPI3 resulted in substantial defects in the chromatin association of the MCM complex, DNA replication, cell cycle progression and cell proliferation. Importantly, hIPI3 silencing did not result in a reduction of the protein level of hCDC6, hMCM7, or the ectopically expressed GFP protein, indicating that protein synthesis was not defective in the same time frame of the DNA replication and cell cycle defects. Furthermore, the mRNA and protein levels of hIPI3 fluctuate in the cell cycle, with the highest levels from M phase to early G1 phase, similar to other pre-replicative (pre-RC) proteins. Moreover, hIPI3 interacts with other replication-initiation proteins, co-localizes with hMCM7 in the nucleus, and is important for the nuclear localization of hMCM7. We also found that hIPI3 preferentially binds to the origins of DNA replication including those at the c-Myc, Lamin-B2 and β-Globin loci. These results indicate that hIPI3 is involved in human DNA replication licensing independent of its role in ribosome biogenesis.  相似文献   

5.
Mini-chromosome maintenance (MCM) proteins form heterohexameric complex (MCM2–7) to serve as licensing factor for DNA replication to make sure that genomic DNA is replicated completely and accurately once during S phase in a single cell cycle. MCMs were initially identified in yeast for their role in plasmid replication or cell cycle progression. Each of six MCM contains highly conserved sequence called “MCM box”, which contains two ATPase consensus Walker A and Walker B motifs. Studies on MCM proteins showed that (a) the replication origins are licensed by stable binding of MCM2–7 to form pre-RC (pre-replicative complex) during G1 phase of the cell cycle, (b) the activation of MCM proteins by CDKs (cyclin-dependent kinases) and DDKs (Dbf4-dependent kinases) and their helicase activity are important for pre-RC to initiate the DNA replication, and (c) the release of MCMs from chromatin renders the origins “unlicensed”. DNA replication licensing in plant is, in general, less characterized. The MCMs have been reported from Arabidopsis, maize, tobacco, pea and rice, where they are found to be highly expressed in dividing tissues such as shoot apex and root tips, localized in nucleus and cytosol and play important role in DNA replication, megagametophyte and embryo development. The identification of six MCM coding genes from pea and Arabidopsis suggest six distinct classes of MCM protein in higher plant, and the conserved function right across the eukaryotes. This overview of MCMs contains an emphasis on MCMs from plants and the novel role of MCM6 in abiotic stress tolerance.  相似文献   

6.
7.
8.
Geminin is an unstable inhibitor of DNA replication that negatively regulates the licensing factor CDT1 and inhibits pre-replicative complex (pre-RC) formation in Xenopus egg extracts. Here we describe a novel function of Geminin. We demonstrate that human Geminin protects CDT1 from proteasome-mediated degradation by inhibiting its ubiquitination. In particular, Geminin ensures basal levels of CDT1 during S phase and its accumulation during mitosis. Consistently, inhibition of Geminin synthesis during M phase leads to impairment of pre-RC formation and DNA replication during the following cell cycle. Moreover, we show that inhibition of CDK1 during mitosis, and not Geminin depletion, is sufficient for premature formation of pre-RCs, indicating that CDK activity is the major mitotic inhibitor of licensing in human cells. Taken together with recent data from our laboratory, our results demonstrate that Geminin is both a negative and positive regulator of pre-RC formation in human cells, playing a positive role in allowing CDT1 accumulation in G2-M, and preventing relicensing of origins in S-G2.  相似文献   

9.
Eukaryotic DNA replication starts with the assembly of a pre-replication complex (pre-RC) at replication origins. We have previously demonstrated that Metaphase Chromosome Protein 1 (MCP1) is involved in the early events of DNA replication. Here we show that MCP1 associates with proteins that are required for the establishment of the pre-replication complex. Reciprocal immunoprecipitation analysis showed that MCP1 interacted with Cdc6, ORC2, ORC4, MCM2, MCM3 and MCM7, with Cdc45 and PCNA. Immunofluorescence studies demonstrated the co-localization of MCP1 with some of those proteins. Moreover, biochemical studies utilizing chromatin-immunoprecipitation (ChIP) revealed that MCP1 preferentially binds replication initiation sites in human cells. Interestingly, although members of the pre-RC are known to interact with some hallmarks of heterochromatin, our co-immunoprecipitation and immunofluorescence analyses showed that MCP1 did not interact and did not co-localize with heterochromatic proteins including HP1β and MetH3K9. These observations suggest that MCP1 is associated with replication factors required for the initiation of DNA replication and binds to the initiation sites in loci that replicate early in S-phase. In addition, immunological assays revealed the association of MCP1 forms with histone H1 variants and mass spectrometry analysis confirmed that MCP1 peptides share common sequences with H1.2 and H1.5 subtypes.  相似文献   

10.
Prereplication complexes (pre-RCs) define potential origins of DNA replication and allow the recruitment of the replicative DNA helicase MCM2-7. Here, we characterize MCM9, a member of the MCM2-8 family. We demonstrate that MCM9 binds to chromatin in an ORC-dependent manner and is required for the recruitment of the MCM2-7 helicase onto chromatin. Its depletion leads to a block in pre-RC assembly, as well as DNA replication inhibition. We show that MCM9 forms a stable complex with the licensing factor Cdt1, preventing an excess of geminin on chromatin during the licensing reaction. Our data suggest that MCM9 is an essential activating linker between Cdt1 and the MCM2-7 complex, required for loading the MCM2-7 helicase onto DNA replication origins. Thus, Cdt1, with its two opposing regulatory binding factors MCM9 and geminin, appears to be a major platform on the pre-RC to integrate cell-cycle signals.  相似文献   

11.
Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.  相似文献   

12.
Zhang Y  Yu Z  Fu X  Liang C 《Cell》2002,109(7):849-860
Initiation of eukaryotic DNA replication requires many proteins that interact with one another and with replicators. Using a yeast genetic screen, we have identified Noc3p (nucleolar complex-associated protein) as a novel replication-initiation protein. Noc3p interacts with MCM proteins and ORC and binds to chromatin and replicators throughout the cell cycle. It functions as a critical link between ORC and other initiation proteins to effect chromatin association of Cdc6p and MCM proteins for the establishment and maintenance of prereplication complexes. Noc3p is highly conserved in eukaryotes and is the first identified bHLH (basic helix-loop-helix) protein required for replication initiation. As Noc3p is also required for pre-rRNA processing, Noc3p is a multifunctional protein that plays essential roles in two vital cellular processes.  相似文献   

13.
The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4Cdt2) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.  相似文献   

14.
在真核生物中,DNA复制在染色体上特定的多位点起始.当细胞处在晚M及G1期,多个复制起始蛋白依次结合到DNA复制源,组装形成复制前复合体.pre.RC在Gl-S的转折期得到激活,随后,多个直接参与DNA复制又形成的蛋白结合到DNA复制源,启动DNA的复制,形成两个双向的DNA复制又.在染色体上,移动的DNA复制又经常会碰到复制障碍(二级DNA结构、一些蛋白的结合位点、损伤的碱基等)而暂停下来,此时,需要细胞周期检验点的调控来稳定复制叉,否则,会导致复制又垮塌及基因组不稳定.本文就真核细胞染色体DNA复制起始的机制,以及复制又稳定性的维持机制进行简要综述.  相似文献   

15.
16.
MCM4 forms the pre-replication complex (MCM2-7) with five other minichromosome maintenance (MCM) proteins. This complex binds to replication origins at G1 stage in cell cycle process, playing a critical role in DNA replication initiation. Recently, MCM4 is reported to have a complex interaction with multiple cancer progression, including gastric, ovarian and cervical cancer. Here, this study mainly focused on the expression of MCM4 and its values in lung adenocarcinoma (LUAD). MCM4 was highly expressed in LUAD tumours and cells, and had an important effect on the overall survival. Overexpression of MCM4 promoted the proliferation, and suppressed the apoptosis in LUAD cells. However, MCM4 silence led to the opposite results. In vivo, knockdown of MCM4 inhibited tumour volume and weight in xenograft mouse model. As a member of DNA helicase, knockdown of MCM4 caused cell cycle arrest at G1 stage through inducing the expression of P21, a CDK inhibitor. These findings indicate that MCM4 may be a possible new therapeutic target for LUAD in the future.  相似文献   

17.
A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.  相似文献   

18.
In all eukaryotes, the heterohexameric MCM2-7 complex functions as the main replicative helicase during S phase. During early G1 phase, it is recruited onto chromatin in a sequence of reactions called pre-replication complex (pre-RC) formation or DNA licensing. This process is ATP-dependent and at least two different chromatin-bound ATPase activities are required besides several others essential, but not enzymatically active, proteins. Although functionally conserved during evolution, pre-RC formation and the way the MCM2-7 helicase is loaded onto DNA are more complex in metazoans than in single-cell eukaryotes. Recently, we characterized a new essential factor for pre-RC assembly and DNA licensing, the vertebrate-specific MCM9 protein that contains not only an ATPase but also a helicase domain. MCM9 adds another layer of complexity to how vertebrates achieve and regulate the loading of the MCM2-7 helicase and DNA replication.  相似文献   

19.
Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes during Drosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.  相似文献   

20.
Eukaryotic DNA replication is tightly restricted to only once per cell cycle in order to maintain genome stability. Cells use multiple mechanisms to control the assembly of the prereplication complex (pre-RC), a process known as replication licensing. This review focuses on the regulation of replication licensing by posttranslational modifications of the licensing factors, including phosphorylation, ubiquitylation and acetylation. These modifications are critical in establishing the pre-RC complexes as well as preventing rereplication in each cell cycle. The relationship between rereplication and diseases, including cancer and virus infection, is discussed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号