首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
草莓叶片光合作用对强光的响应及其机理研究   总被引:41,自引:9,他引:32  
用便携式调制叶绿素荧光仪和光合仪研究了强光下草莓叶片荧光参数及表观量子效率的变化.结果表明,Fm、Fv/Fm、PSⅡ无活性反应中心数量和QA的还原速率在强光下降低,在暗恢复时升高;而PSⅡ反应中心非还原性QB的比例在强光下增加,在暗恢复时降低.上述荧光参数的变化幅度均以强光胁迫或暗恢复的前10 min最大.强光下ΦPSII、ETR和qP先升高后降低,但qN先大幅度降低,然后小幅回升.强光处理4 h后,丰香和宝交早生的表观量子效率(AQY)分别降低了20.9%和37.5%;qE(能量依赖的非光化学猝灭)为NPQ(非光化学猝灭)的最主要成分.强光胁迫下丰香的Fo、Fm、Fv/Fm、ΦPSII、ETR和AQY的变化幅度均明显比宝交早生小.DTT处理后,草莓叶片的Fm和Fv/Fm明显降低,Fo显著升高.可以认为,依赖叶黄素循环和类囊体膜质子梯度两种非辐射能量耗散在草莓叶片防御光损伤方面起着重要作用,丰香的光合机构比宝交早生更耐强光.  相似文献   

2.
The generation of nonphotochemical quenching of chlorophyll fluorescence (qN) in the antenna of photosystem II (PSII) is accompanied by the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin. The function of zeaxanthin in two mechanisms of qN, energy-dependent quenching (qE) and photoinhibitory quenching (qI), was investigated by measuring the de-epoxidation state in the antenna subcomplexes of PSII during the generation and relaxation of qN under varying conditions. Three different antenna subcomplexes were separated by isoelectric focusing: Lhcb1/2/3, Lhcb5/6, and the Lhcb4/PSII core. Under all conditions, the highest de-epoxidation state was detected in Lhcb1/2/3 and Lhcb5/6. The kinetics of de-epoxidation in these complexes were found to be similar to the formation of qE. The Lhcb4/PSII core showed the most pronounced differences in the de-epoxidation state when illumination with low and high light intensities was compared, correlating roughly with the differences in qI. Furthermore, the epoxidation kinetics in the Lhcb4/PSII core showed the most pronounced differences of all subcomplexes when comparing the epoxidation after either moderate or very strong photoinhibitory preillumination. Our data support the suggestion that zeaxanthin formation/epoxidation in Lhcb1-3 and Lhcb5/6 may be related to qE, and in Lhcb4 (and/or PSII core) to qI.  相似文献   

3.
阳成伟  陈贻竹  彭长连 《广西植物》2002,22(6):534-536-536
经ABA处理的水稻幼苗叶片和对照相比 ,PSII光化学效率 (Fv/Fm)和非光化学猝灭系数 (qN)显著受抑制。经高光处理 1h后 ,ABA处理的水稻幼苗叶片光抑制程度比对照小 ,这暗示ABA对高光光抑制具有一定的光保护作用 ,且间接表明ABA提高水稻幼苗抗光抑制的能力与叶黄素循环密切相关。  相似文献   

4.
 The light environment within tropical rain forests varies considerably both spatially and temporally, and photon flux density (PFD) is considered to be an important factor determining the growth and survival of rain forest tree seedlings. In this paper we examine the ability of four ecologically contrasting dipterocarps (Dryobalanops lanceolata, Shorea leprosula, Hopea nervosa and Vatica oblongifolia) to utilise and dissipate light energy when grown in different light environments in lowland dipterocarp rain forest in the Danum Valley Conservation Area, Sabah, East Malaysia. Specifically we report (i) photosynthetic light response curves and associated fluorescence characteristics, including quantum yield (ΦPSII) and non-photochemical quenching (qN) and (ii) the extent to which photoinhibition occurs when plants grown in either high or low light are exposed to short bursts of high PFD. When grown in low light (artificial or forest shade) all four species had low light saturated rates of photosynthesis which were achieved at low PFDs. In addition, values of ΦPSII and qN were similar over a range of measurement PFDs. D. lanceolata and S. leprosula were also grown at high PFD and showed marked differences in their responses. S. leprosula demonstrated an ability to increase its rate of photosynthesis and there was a small increase in capacity to dissipate excess light energy non-photochemically at high PFDs. Partitioning of this qN into its fast, photo-protective (qE) and slow, photoinhibitory (qI) components indicated that there was an increase in qE quenching. In contrast, although D. lanceolata survived in the high light environment, greater rates of photosynthesis were not observed and the plants showed a greater capacity to dissipate energy non-photochemically. Partitioning of qN revealed that the majority of this increase was attributable to the slower relaxing phases. Received: 10 February 1996 / Accepted: 14 June 1996  相似文献   

5.
The possible role of zeaxanthin formation and antenna proteins in energy-dependent chlorophyll fluorescence quenching (qE) has been investigated. Intermittent-light-grown pea (Pisum sativum L.) plants that lack most of the chlorophyll a/b antenna proteins exhibited a significantly reduced qE upon illumination with respect to control plants. On the other hand, the violaxanthin content related to the number of reaction centers and to xanthophyll cycle activity, i.e. the conversion of violaxanthin into zeaxanthin, was found to be increased in the antenna-protein-depleted plants. Western blot analyses indicated that, with the exception of CP 26, the content of all chlorophyll a/b-binding proteins in these plants is reduced to less than 10% of control values. The results indicate that chlorophyll a/b-binding antenna proteins are involved in the energy-dependent fluorescence quenching but that only a part of qE can be attributed to quenching by chlorophyll a/b-binding proteins. It seems very unlikely that xanthophylls are exclusively responsible for the qE mechanism.Abbreviations CAB chlorophyll a/b-binding - Chl chlorophyll - FV variable fluorescence - IML intermittent light - LHC light harvesting complex - PFD photon flux density - qP photochemical quenching of chlorophyll fluoresence - qN non-photochemical quenching - qE energy-dependent quenching - qI photoinhibitory quenching - qT quenching by state transition  相似文献   

6.
M Richter  R Goss  B Wagner  A R Holzwarth 《Biochemistry》1999,38(39):12718-12726
The fast and slow reversible components of non-photochemical chlorophyll fluorescence quenching commonly assigned to the qE and the qI mechanism have been studied in isolated pea thylakoids which were prepared from leaves after a moderate photoinhibitory treatment. Chlorophyll fluorescence decays were measured at picosecond resolution and analyzed on the basis of the heterogeneous exciton/radical pair equilibrium model. Our results show that the fast reversible non-photochemical quenching is completely assigned to the PS II antenna and is related to zeaxanthin. The slow reversible qI type quenching is located at the PS II reaction center and involves enhanced nonradiative decay of the primary charge separated state to its ground state and/or triplet excited state. Apart from its independence from the proton gradient, the qI quenching shows striking similarities to a particular form of qE quenching which is also located at the PS II reaction center and has resently been resolved in isolated thylakoids from dark-adapted leaves [Wagner, B., et al. (1996) J. Photochem. Photobiol., B 36, 339-350]. Our data suggest that during exposure to the supersaturating light the reaction center qE component was replaced by qI quenching. This qE to qI transition is supposed to be part of the mechanism of the long-term downregulation of PS II during photoinhibition. It is also evident that under the conditions used in our study zeaxanthin-dependent antenna quenching is not involved in the slow reversible downregulation of PS II but that it retains its dependence on the proton gradient during exposure to strong light.  相似文献   

7.
A study was conducted, using chlorophyll fluorescence, rapid fluorescence induction kinetics, and polyphasic fluorescence transients, to determine the effect of salt treatment and heat stress on PSII photochemistry in Rumex leaves. Salt treatment was accomplished by adding NaCl solutions of different concentrations ranging from 50 to 200 mmol/L. Heat stress was induced by exposing the plant leaves to temperatures ranging from 29 to 47 degrees C. The control plants were grown without NaCl treatment. The data acquired in this study showed that NaCl treatment alone had no effect on the maximal photochemistry of PSH or the polyphasic rise of chlorophyll fluorescence. However, the NaCl treatment modified heat stress on PSII photochemistry in Rumex leaves, which was manifested by a lesser heat-induced decrease in photochemical quenching (qP), efficiency of excitation energy capture by open PSII reaction centers (Fv'/Fm'), and quantum yield of PSII electron transport (phiPSII). The data also showed that NaCl treatment compromised the impact of heat stress on the capacity of transferring electrons from Q(A)- to Q(B). Furthermore, the NaCl treatment promoted heat resistance of O2-evolving complex (OEC). In summary, NaCl treatment enhanced the thermostability of PSII.  相似文献   

8.
The role of light in the effect of salt stress on PSII photochemistry in the cyanobacterium Spirulina platensis grown at 50 micromol m(-2) s(-1) was investigated. The time-course of changes in PSII photochemistry in response to high salinity (0.8 M NaCl) incubated in the dark and at 30, 50 and 100 micromol m(-2) s(-1) was composed of two phases. The first phase, which was independent of light, was characterized by a rapid decrease (20-50%) in the maximal efficiency of PSII photochemistry (F:(v)/F:(m)), the efficiency of excitation energy capture by open PSII reaction centres (F(1)(v)/F(1)(m)), photochemical quenching (q(P)), and the quantum yield of PSII electron transport (Phi(PSII)) in the first 15 min, followed by a recovery of up to about 86-92% of their initial levels after 4 h of incubation. The second phase took place after 4 h, in which a further decline in the above parameters occurred only in the light but not in the dark, reaching levels as low as 32-56% of their initial levels after 12 h. Moreover, the higher incubation light intensity, the greater the decrease in the above parameters. At the same time, Q(B)-non-reducing PSII reaction centres increased significantly in the first 15 min and then recovered to the initial level during the first phase, but increased again in the light in the second phase. Photosynthetic oxygen evolution activity decreased sharply by 70% in the first 5 min, and then kept largely constant until 12 h. The changes in oxygen evolution activity were independent of light intensity during both phases.  相似文献   

9.
Photosynthesis, photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle in the senescent flag leaves of wheat (Triticum aestivum L.) plants grown in the field were investigated. Compared to the non-senescent leaves, photosynthetic capacity was significantly reduced in senescent flag leaves. The light intensity at which photosynthesis was saturated also declined significantly. The light response curves of PSII photochemistry indicate that a down-regulation of PSII photochemistry occurred in senescent leaves in particular at high light. The maximal efficiency of PSII photochemistry in senescent flag leaves decreased slightly when measured at predawn but substantially at midday, suggesting that PSII function was largely maintained and photoinhibition occurred in senescent leaves when exposed to high light. At midday, PSII efficiency, photochemical quenching and the efficiency of excitation capture by open PSII centers decreased considerably, while non-photochemical quenching increased significantly. Moreover, compared with the values at early morning, a greater decrease in CO2 assimilation rate was observed at midday in senescent leaves than in control leaves. The levels of antheraxanthin and zeaxanthin via the de-epoxidation of violaxanthin increased in senescent flag leaves from predawn to midday. An increase in the xanthophyll cycle pigments relative to chlorophyll was observed in senescent flag leaves. The results suggest that the xanthophyll cycle was activated in senescent leaves due to the decrease in CO2 assimilation capacity and the light intensity for saturation of photosynthesis and that the enhanced formation of antheraxanthin and zeaxanthin at high light may play an important role in the dissipation of excess light energy and help to protect photosynthetic apparatus from photodamage. Our results suggest that the well-known function of the xanthophyll cycle to safely dissipate excess excitation energy is also important for maintaining photosynthetic function during leaf senescence.  相似文献   

10.
Irreversible photoinhibition of photosystem II (PSII) occurred when Synechocystis sp. PCC 6803 cells were exposed to very strong light for a prolonged period. When wild-type cells were illuminated at 20 degrees C for 2 h with light at an intensity of 2,500 micromol photons m(-2) s(-1), the oxygen-evolving activity of PSII was almost entirely and irreversibly lost, whereas the photochemical reaction center in PSII was inactivated only reversibly. The extent of irreversible photoinhibition was enhanced at lower temperatures and by the genetically engineered rigidification of membrane lipids. Western and Northern blotting demonstrated that, after cells had undergone irreversible photoinhibition, the precursor to D1 protein in PSII was synthesized but not processed properly. These observations may suggest that exposure of Synechocystis cells to strong light results in the irreversible photoinhibition of the oxygen-evolving activity of PSII via impairment of the processing of pre-D1 and that this effect of strong light is enhanced by the rigidification of membrane lipids.  相似文献   

11.
12.
Through imaging of chlorophyll fluorescence, it is possible to produce parameterized fluorescence images that estimate the operating quantum efficiency of photosystem II (PSII) photochemistry and which can be used to reveal heterogeneous patterns of photosynthetic performance within leaves. The operating quantum efficiency of PSII photochemistry is dependent upon the effective absorption cross-section of the light-harvesting system of PSII and the photochemical capacity of PSII. The effective absorption cross-section is decreased by the process of down-regulation, which is widely thought to operate within the pigment matrices of PSII and which results in non-photochemical quenching of chlorophyll fluorescence. The photochemical capacity is non-linearly related to the proportion of PSII centres in the 'open' state and results in photochemical quenching of chlorophyll fluorescence. Examples of heterogeneity of the operating quantum efficiency of PSII photochemistry during the induction of photosynthesis in maize leaves and in the chloroplast populations of stomatal guard cells of a leaf of Tradescantia albifora are presented, together with analyses of the factors determining this heterogeneity. A comparison of the operating quantum efficiency of PSII photochemistry within guard cells and adjacent mesophyll cells of Commelina communis is also made, before and after stomatal closure through a change in ambient humidity.  相似文献   

13.
采用棚内盆栽方法, 设置pH值5.6 (对照)、4.0、3.0和2.0的模拟酸雨胁迫试验, 探讨其对白簕幼苗叶片MDA含量、保护酶活性、叶绿素含量、气体交换参数和叶绿素荧光参数的影响。结果表明, 随着模拟酸雨pH值的降低, MDA含量呈先降低后升高的趋势; SOD活性逐渐降低, POD活性逐渐升高, APX活性呈先升高后降低的变化。叶绿素a、叶绿素b、总叶绿素含量均比对照高, 在pH 4.0时达最大值。气孔限制值(Ls)、PSII实际光化学量子产量(ΦPSII)、光化学淬灭系数(qP)均随pH值的降低而下降, 净光速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、水分利用效率(WUE)、PSII最大光化学效率(Fv/Fm)、PSII的潜在活性(Fv/Fo)、非光化学淬灭系数(qN)呈先升高后降低趋势, 且也都在pH 4.0时达最大值。由此推测, pH 4.0的酸雨处理有利于白簕幼苗的生长, 表明白簕幼苗可能喜欢生活在微酸环境中, 但是随着酸度加强, 反而起到抑制作用。  相似文献   

14.
热锻炼对甘蓝幼苗叶片激发能分配的影响   总被引:3,自引:1,他引:2  
以喜温凉的蔬菜甘蓝为试材,研究了热锻炼与对照甘蓝幼苗叶片光合速率和叶绿素荧光参数对高温胁迫的响应.结果表明,叶片温度在25-35℃之间,热锻炼苗和对照苗叶片叶绿素可变荧光(Fv)、光化学猝灭(qP)、非光化学猝灭(qN)、PSⅡ化学效率(ФPSⅡ)没有明显的变化;当叶温高于35℃时。热锻炼苗的Fv、qP和中ФPSⅡ均明显高于对照,37℃时Fv、qP和ФPSⅡ分别比对照高53%、24%和86%;qN较对照低22%,尤其是与光抑制(光破坏)有关的qNs明显降低,以维持较高的高能态猝灭(qNf)耗散过剩激发能。保护PSⅡ反应中心不受破坏。减轻了光抑制,这与热锻炼幼苗叶片在高温下具有较高的光合能力是一致的。  相似文献   

15.
Changes in photochemical activity induced by water deficit were investigated in Talinum triangulare, an inducible CAM plant. The aim was to analyse the interactions between C3 photosynthesis, induction and activity of CAM, photosynthetic energy regulation and the mechanisms responsible for photoprotection and photoinhibition under water stress. Gas exchange, chlorophyll a fluorescence, titratable acidity, carotenoid composition and relative contents of the PSII reaction centre protein (D1) were measured. A decrease in xylem tension (psi) from -0.14 to -0.2 MPa substantially decreased daytime net CO2 assimilation and daily carbon gain, and induced CAM, as shown by CO2 assimilation during the night and changes in titratable acidity; a further decrease in psi decreased nocturnal acid accumulation by 60%. Non-photochemical quenching of chlorophyll a fluorescence (NPQ) increased with water deficit, but decreased with a more severe drought (psi below -0.2 MPa), when CAM activity was low. NPQ was lower at 0900 h (during maximum decarboxylation rates) than at 1400 h, when malate pools were depleted. Down-regulation of PSII activity related to the rise in NPQ was indicated by a smaller quantum yield of PSII photochemistry (phiPSII) in droughted compared with watered plants. However, phiPSII was larger at 0900 h than at 1400 h. The de-epoxidation state of the xanthophyll cycle increased with drought and was linearly related to NPQ. Intrinsic quantum yield of PSII (FV/FM) measured at dusk was also lower in severely stressed plants than in controls. Under maximum photosynthetic photon flux and high decarboxylation rates of organic acids, the D1 content in leaves of droughted plants showing maximal CAM activity was identical to the controls; increased drought decreased D1 content by more than 30%. Predawn samples had D1 contents similar to leaves sampled at peak irradiance, with no signs of recovery after 12 h of darkness. It is concluded that under mild water stress, early induction of CAM, together with an increased energy dissipation by the xanthophyll cycle, prevents net degradation of D1 protein; when water deficit is more severe, CAM and xanthophyll cycle capacities for energy dissipation decline, and net degradation of D1 proceeds.  相似文献   

16.
低温弱光胁迫对日光温室栽培杏树光系统功能的影响   总被引:4,自引:0,他引:4  
以温室栽培的金太阳杏为材料,测定了金太阳杏叶片光合速率(Pn)、光系统Ⅱ(PSⅡ)光下实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)和开放的PSⅡ反应中心的激发能捕获效率(Fv/Fm), 探讨了低温弱光(7 ℃、200 μmol·m-2·s-1 PFD)对叶片光系统Ⅰ(PSⅠ)和PSⅡ的抑制作用.结果表明:温室栽培的金太阳杏叶光合作用的最适温度在25 ℃左右.光下7 ℃的低温可使叶片净光合速率(Pn)大幅下降,造成激发压(1-qP)增大,进而引起光抑制.低温弱光条件使PSⅠ和PSⅡ功能受到破坏,与单纯低温胁迫(7 ℃,黑暗)处理相比,经低温、弱光(7 ℃, 200 μmol·m-2·s-1PFD)胁迫2 h后,PSⅠ活性下降了28.26%,而PSⅡ最大光化学效率(Fv/Fm)没有发生显著变化,表明低温弱光条件下PSⅠ比PSⅡ 更易发生光抑制.  相似文献   

17.
The effect of prolonged light deprivation on ultrastructure, pigment composition and functions of photosynthetic apparatus of the resurrection plant Haberlea rhodopensis Friv. (Gesneriaceae) was studied. For this purpose, intact plants were kept in darkness for up to 6 months. Haberlea rhodopensis demonstrated extraordinary ability to preserve its photosynthetic machinery intact despite complete absence of light. During the first 4 weeks of light deprivation, we observed preservation of pigment content, chloroplast ultrastructure and a decrease in the rate of CO(2) assimilation. The signs of dark-induced senescence were observed only after the fourth week. This phase was characterized by decrease of pigment content, partial disintegration of chloroplast ultrastructure and by the development of photosystem II down regulation that includes the increases in non-photochemical fluorescence quenching, qN. In comparison with other plants like common bean and Arabidopsis, the processes of dark-induced senescence were very slow and the plants still can recover even after 6 months of light deprivation. We think these findings can open new opportunities for studying not only dark-induced senescence but also to investigate mechanisms determining tolerance to multiple stresses affecting integrity of photosynthetic apparatus.  相似文献   

18.
The effects of high salinity (0-400 mmol/L NaCl) on photosystem II (PSII) photochemistry and photosynthetic pigment composition were investigated in the halophyte Artimisia anethifolia grown under outdoor conditions and exposed to full sunlight. High salinity resulted in an inhibition in plant growth and a significant accumulation of sodium and chloride in leaves. However, high salinity induced no effects on the actual PSII efficiency, the efficiency of excitation energy capture by open PSII reaction centres, photochemical quenching, and non-photochemical quenching at midday. High salinity also induced neither changes in the maximum efficiency of PSII photochemistry, the efficiency with which a trapped exciton can move an electron into the electron transport chain further than QA and the quantum yield of electron transport beyond QA, nor changes in absorption, trapping and electron transport fluxes per PSII reaction centre. No significant changes were observed in the levels of neoxanthin, lutein, beta-carotene, violaxanthin, antheraxanthin, and zeaxanthin expressed on a total chlorophyll basis in salt-adapted plants. Our results suggest that Artimisia anethifolia showed high resistance not only to high salinity, but also to photoinhibition even if it was treated with high salinity as high as 400 mmol/L NaCl and exposed to full sunlight. The results indicate that tolerance of PSII to high salinity and photoinhibition can be viewed as an important strategy for Artimisia anethifolia, a halophyte plant, to grow in very high saline soil.  相似文献   

19.
不同品种美国山核桃叶绿素荧光参数日变化的研究   总被引:5,自引:0,他引:5  
以湖南省永州市冷水滩采穗圃中的美国山核桃为试材,研究了叶绿素荧光参数的日变化规律。结果表明:初始荧光(Fo)、最大荧光(Fm)、PSII原初光能转化效率(Fv/Fm)、光合量子产额(Yield)、光化学猝灭系数(qP)、非光化学猝灭系数(qN)和表观电子传递速率(ETR)均存在着明显的日变化。其中Fv/Fm、Fm、Yield、qP均呈先下降后上升的趋势,在中午强光下降低到最低值;qN则呈先上升后下降的趋势,在中午时分达到峰值;Fo呈下降趋势,部分品种傍晚稍有回升,但仍比早晨低;ETR日变化呈双峰曲线。不同品种间Fv/Fm、Yield、ETR、qP、qN对光强和温度的响应也存在着明显差异,可作为鉴定品种耐光抑制能力大小的指标。  相似文献   

20.
Thermoluminescence glow curve parameters were used to access the functional features of PS II in the Balkan endemic Haberlea rhodopensis. This representative of the higher desiccation-tolerant plants is unique for the European flora. An unusual high temperature of TL emission from Haberlea leaves after excitation by one flash at 5 degrees C was observed. The position of the main TL B band (S (2)Q (B)(-)) was at 45 - 47 degrees C, while this temperature was 30 - 32 degrees C in drought-sensitive mesophytic spinach. Consistent with the up-shift in TL emission, the lifetime of the S (2) state was also increased, showing a stabilization of charge storage in PS II complex in this resurrection plant. In addition, a part of PS II centres was less susceptible to DCMU. We consider the observed unusual TL characteristics of Haberlea rhodopensis reflect some structural modifications in PS II (especially in D1 protein), which could be related to the desiccation tolerance of this plant. This suggestion was supported by the different manner in which dehydration affected the TL properties in desiccation-tolerant Haberlea and desiccation-sensitive spinach plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号