首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
The modelling of ion uptake by plants requires the measurement of kinetic and growth parameters under specific conditions. The objective of this study was to evaluate the effect of nine NH inf4 sup+ :NO inf3 sup− ratios on onions (Allium cepa L.). Twenty-eight to 84 day-old onion plants were treated with NH inf4 sup+ :NOf3/sup− ratios ranging from 0 to 100% of each ionic species in one mM solutions in a growth chamber. Maximum N influx (Imax) was assessed using the N depletion method. Except at an early stage, ionic species did not influence significantly Imax, the Michaelis constant (Km) and the minimum concentration for net uptake (Cmin). Imax for ammonium decreased from 101 to 59 pmole cm-2 s-1 while Imax for nitrate increased from 26 to 54 pmole cm-2 s-1 as the plant matured. On average, Km and Cmin values were 14.29 μM, and 5.06 μM for ammonium, and 11.90 μM and 4.54 μM for nitrate, respectively. In general, the effect of NH4 +:NO3 - ratios on root weight, shoot weight and total weight depended on plant age. At an early stage, maximum plant growth and N uptake were obtained with ammonium as the sole source of N. At later stages, maximum plant growth and N uptake were obtained as the proportion of nitrate increased in the nutrient solution. The was no apparent nutrient deficiency whatever NH4 +:NO3 - ratio was applied, although ammonium reduced the uptake of cations and increased the uptake of phosphorus. The research was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

2.
The Barber-Cushman mechanistic nutrient uptake model, which has been utilized extensively to describe and predict nutrient uptake by crop plants, was evaluated for its ability to predict K, Mg, and P uptake by loblolly pine (Pinus taeda L.) seedlings. Sensitivity analyses were also used to investigate the impact of changes in soil nutrient supply, root morphological, and root uptake kinetics parameters on simulated nutrient uptake. Established experimental techniques were utilized to define the 11 parameters needed to model uptake by 1-0 seedlings of K, Mg, and P from a modified A horizon soil (Lilly series). Model predictions of K and P uptake over a 180-d growth period were underestimated by 6 and 11%, respectively. Estimates of Mg uptake were underestimated by 62%. While the level of agreement between predicted and observed K and P values was quite acceptable, analysis of parameter values and results of sensitivity analyses both indicated that the model underestimation of Mg uptake was the result of applying an Imax value developed under relatively low Mg concentration to a situation in which the functional Imax would be much higher due to the dominance of passive versus active uptake. Overall results of sensitivity analyses indicate that under the circumstances investigated, Imax, was the primary variable controlling plant uptake of K, Mg, and P. The dominance of this term over others was due to the relatively high Cli values for all three nutrients. Reducing (-50%) or increasing (+ 100%) other soil supply, root morphological, and remaining root uptake kinetics values did not substantially alter model estimates of nutrient uptake.  相似文献   

3.
To obtain plants of different P status, maize and soybean seedlings were grown for several weeks in flowing nutrient solution culture with P concentrations ranging from 0.03–100 µmol P L-1 kept constant within treatments. P uptake kinetics of the roots were then determined with intact plants in short-term experiments by monitoring P depletion of a 3.5 L volume of nutrient solution in contact with the roots. Results show maximum influx, Imax, 5-fold higher in plants which had been raised in solution of low compared with high P concentration. Because P concentrations in the plants were increased with increase in external P concentration, Imax was negatively related to % P in shoots. Michaelis constants, Km, were also increased with increased pretreatment P concentration, only slightly with soybean, but by a factor of 3 with maize. The minimum P concentration, Cmin, where net influx equals zero, was found between 0.06 and 0.3 µmol L-1 with a tendency to increase with pretreatment P concentration. Filtration of solutions at the end of the depletion experiment showed that part of the external P was associated with solid particles.It was concluded that plants markedly adapt P uptake kinetics to their P status, essentially by the increase of Imax, when internal P concentration decreases. Changes of Km and Cmin were of minor importance.  相似文献   

4.
Magnesium uptake kinetics in loblolly pine seedlings   总被引:1,自引:0,他引:1  
Recent studies have suggested that the growth of loblolly pine (Pinus taeda L.) has declined in the southern United States and it has been hypothesized that foliar Mg deficiency may play an important role in the perceived decline. Quantitative nutrient uptake models such as the Barber-Cushman model have been used successfully to investigate nutrient uptake by crop species under a variety of field and experimental conditions and may provide one approach to evaluating this question. However, in order to use this approach it is necessary to develop, for the plant species and nutrient of interest, values for maximal nutrient influx rate at high solution concentrations (Imax), the solution concentration where net influx is 0.5 Imax (Km), and the nutrient concentration below which influx ceases (Cmin). As a first step in evaluating the potential of such an approach, two sets of experiments using established solution nutrient depletion techniques were used to define these values for loblolly pine seedlings 180, 240, 365, and 425 days in age. Observed Imax values for Mg range from 7.90E-8 to 1.29E-7 mol cm–2 s–1 with younger seedlings having higher values. Values of Km for all seedling ages were quite similar ranging from 8.69 to 8.58E-3 mol cm–3. Most importantly, the results of both experiments indicate that during a growth flush, seedlings will withdraw Mg from solution until the concentration is essentially zero (Cmin=0). During non-flush periods uptake rates appear to be greatly reduced. Therefore, efforts to model Mg uptake will need to take these differences as well as seedling age influences into consideration.  相似文献   

5.
Kinetics of net phosphate (Pi) uptake was measured on intact ectomycorrhizal and non‐mycorrhizal Pinus sylvestris seedlings using a semihydroponic cultivation method. The depletion of Pi in a nutrient solution was assessed over a 160–0.2 μM Pi gradient. Growth of the pine seedlings was P limited and measurements were performed 7 and 9 weeks after inoculation. Three ectomycorrhizal fungi were studied: Paxillus involutus, Suillus bovinus and Thelephoraterrestris. Pi uptake was extremely fast in plants colonised by P. involutus. The Pi concentration dropped below 0.2 μM within 4–5 h. In plants colonised with S. bovinus this occurred in 5–6 h and in plants associated with T. terrestris 8 h were needed to run through the whole concentration range. Non‐mycorrhizal plants of similar size and nutrient status decreased Pi to a concentration between 1 and 2 μM in 18 h. Data were curve fitted to a two‐phase Michaelis‐Menten equation. The apparent kinetic constants, Km and Vmax, for the high affinity Pi uptake system of the pine roots could be estimated accurately. Vmax of this system was up to 7 times higher in pines associated with P. involutus than in non‐mycorrhizal seedlings. The intact extraradical mycelium greatly increased the absorption surface area of the roots (Vmax). Non‐mycorrhizal plants had a Km between 7.8 and 16.4 μM Pi. Plants mycorrhizal with P. involutus had Km values between 2.4 and 7.2, plants colonised with S. bovinus had a Km between 5.1 and 12.3, and seedlings associated with T. terrestris had a Km from 4.6 to 10.1 μM Pi. All 3 ectomycorrhizal fungi had a strong impact on the Pi absorption capacity of the pine seedlings. The results also demonstrated that there is substantial heterogeneity in kinetic parameters among the different mycorrhizal root systems.  相似文献   

6.
Summary The effects of aluminium concentrations between 0.2 and 30 mM at pH 3.8 ±0.2 on small plants of Norway spruce [(Picea abies (L.) Karst], Scots pine (Pinus sylvestris L.), and Scots pine infected with the ectomycorrhizal fungus Suillus bovinus (L. ex Fr.) O. Kuntze were investigated. The plants were grown at maximum relative growth rate (RG % day–1) with free access but very low external concentrations of nutrients. Steady-state conditions with respect to relative growth rate (RG) and internal nutrient concentrations were achieved before addition of aluminium, which was added as AlCl3 and/or Al(NO3)3. There were reductions in rg at aluminium concentrations of 0.3 mM in spruce, 6 mM in pine and 10 mM in ectomycorrhizal pine, i. e. at aluminium concentrations considerably higher than those normally occurring in the top layer of the mineral soil where most fine roots are found. Nutrient uptake rate per unit root growth rate was calculated for different nutrient elements. The uptake rate of calcium and magnesium was reduced at aluminium concentrations of 0.2 mM (spruce), 1 mM (pine) and 3 mM (ectomycorrhizal pine), without influencing Rg. The results question the validity of the hypothesis of aluminium toxicity to forest tree species at low external concentrations.  相似文献   

7.
 Carbon dioxide enrichment may increase the Al tolerance of trees by increasing root growth, root exudation and/or mycorrhizal colonization. The effect of elevated CO2 on the response of mycorrhizal pitch pine (Pinus rigida Mill.) seedlings to Al was determined in two experiments with different levels of nutrients, 0.1- or 0.2-strength Clark solution. During each experiment, seedlings inoculated with the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch were grown 13 weeks in sand irrigated with nutrient solution (pH 3.8) containing 0, 6.25, 12.5, or 25 mg/l Al (0, 232, 463, or 927 μM Al) in growth chambers fumigated with 350 (ambient) or 700 (elevated) μl/l CO2. At ambient CO2, in the absence of Al, mean total dry weights (DW) of seedlings at the high nutrient level were 164% higher than those at the low level. Total DW at elevated CO2, in the absence of Al, was significantly greater than that in ambient CO2 at the low (+34%) and high (+16%) nutrient levels. Root and shoot DW at both nutrient levels decreased with increasing Al concentrations with Al reducing root growth more than shoot growth. Although visible symptoms of Al toxicity in roots and needles were reduced by CO2 enrichment, there were no significant CO2 × Al interactions for shoot or root DW. The percentage of seedling roots that became mycorrhizal was negatively related to nutrient level and was greater at elevated than at ambient CO2 levels. Generally, elevated CO2 had little effect on concentration of mineral nutrients in roots and needles. Aluminum reduced concentrations of most nutrients by inhibiting uptake. Received: 18 June 1997 / Accepted: 8 December 1997  相似文献   

8.
Red maple (Acer rubrumL.) occurs in a broad spectrum of both woodland and managed landscapes in much of eastern North America. Earlier work has indicated considerable plasticity within the species in water use efficiency, as well as dry mass accumulation and tertiary root extension when grown in a solution in which all N was supplied as NO3 -. Nitrogen uptake is largely a function of N supply, soil water availability and root surface area. Therefore, compensatory mechanisms could have evolved among cultivars to compensate for site differences. The objective of this study was to define NO3 - uptake parameters for red maple in a hydroponic system through the use of two cultivars known to differ in root production and water use efficiency. Green wood stem cuttings of two red maple cultivars, `Autumn Flame' and `Franksred', were rooted and then transferred to solution culture. Using established techniques, three separate experiments were conducted to define ranges of Imax, Km and Cmin values and to determine root mass, length, mean radius and surface area. Estimates of Imax exhibited considerable variation between experiments with means ranging from 1.57E-5 to 5.91E-5 μmol cm-2 s-1. However, cultivar differences in Imax were statistically significant in only one of the three experiments. Means for Km ranged from 2.04E-1 to 5.23E-1 μmol cm-3, while Cmin values were consistent at 0.001 μmol cm-3 (the limit of analytical detection) across all experiments. While data on variation among red maple cultivars are not conclusive, some evidence exists for genotype differences that may relate to the broad range of site conditions under which red maple is successfully grown. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The effect of ectomycorrhizal Pisolithus tinctorius (Pt) infection was studied on the growth and photosynthetic characteristics of Pinus densiflora seedlings grown at ambient (360 µmol mol−1, AC) and elevated (720 µmol mol−1, EC) CO2 concentrations. After 18 weeks, Pt inoculation had led to significantly increased dry mass and stem diameter of P. densiflora at both CO2 concentrations, relative to non-inoculated seedlings. Moreover, EC significantly increased the ectomycorrhizal development. The phosphate content in needles inoculated with Pt was about three times higher than without inoculation at both CO2 concentrations. The PAR saturated net photosynthetic rates (P sat) of P. densiflora inoculated with Pt were clearly higher than for control seedlings at both CO2 concentrations, and the maximum net photosynthetic rate (P N) at saturated CO2 concentration (P max) was higher than in controls. Moreover, the carboxylation efficiency (CE) and RuBP regeneration rate of the P N/C i curve for P. densiflora inoculated with Pt were significantly higher than for non-inoculated seedlings at both CO2 concentrations, especially at EC. The water use efficiency (WUE) of seedlings inoculated with Pt grown at EC was significantly raised. Allocation of photosynthates to roots was greater in Pt inoculated pine seedlings, because of the enhanced activity of ectomycorrhiza associated with seedlings at EC. Moreover, P N of non-inoculated seedlings grown for 18 weeks at EC tended to be down regulated; in contrast, Pt inoculated seedlings showed no down-regulation at EC. The activity of ectomycorrhiza may therefore be enhanced physiological function related to water and phosphate absorption in P. densiflora seedlings at EC.This study was partly sponsored by the Ministry of Education, Sport, Culture, Science and Technology of Japan (RR2002, Basic Research B and Sprout study).  相似文献   

10.
Aluminum-mycorrhizal interactions in the physiology of pitch pine seedlings   总被引:7,自引:0,他引:7  
Aluminum (Al) in the rhizosphere adversely affects plant nutrition and growth. Although many conifer species, and pitch pine (Pinus rigida) in particular, have evolved on acidic soils where soluble Al is often high, controlled environment studies often indicate that Al interferes with seedling growth and nutrient relations. Under normal field conditions, conifer roots grow in a symbiotic relationship with ectomycorrhizal fungi, and this association may modulate the effects of Al on root physiology. To investigate the influence of mycorrhizal infection on Al toxicity, pitch pine seedlings were grown with or without the ectomycorrhizal symbiont Pisolithus tinctorius and were exposed to low levels of Al in sand culture. Aluminum at 50 μM reduced nonmycorrhizal seedling growth and increased foliar Al concentrations, but did not alter photosynthetic gas exchange or other aspects of seedling nutrition. Nonmycorrhizal seedlings exposed to 200 μM Al exhibited decreased growth, increased transpiration rates, decreased water use efficiency, increased foliar Al and Na levels, and reduced foliar P concentrations. Seedlings inoculated with P. tinctorius exhibited unaltered growth, physiological function, and ionic relations when exposed to Al. The fungal symbiont evidently modulated ionic relations in the rhizosphere, reducing Al-P precipitation reactions, Al uptake, and subsequent root and shoot tissue Al exposure.  相似文献   

11.
The purpose of this study was to assess the validity of v amax as an indicator of middle-distance running performance in sub-elite young runners, amax being defined as the quotient maximal oxygen uptake (V˙O 2max) divided by the net energy cost of running (C r) on a treadmill at a submaximal running velocity (280 m · min−1). The V˙O 2max, ventilatory threshold, amax, and C r were assessed in 39 young male sub-elite runners having only small variations in performance level. The relationship between each variable and running performance (at 1500 m, 3000 m, and 5000 m) was evaluated. A trend toward a negative correlation existed between C r and performance although this was not significant. The V˙O 2max and amax were significantly related to performance. The amax accounted for around 50% of the variability in performance whereas other physiological variables selected in this study were responsible, at best, for approximately 39%. The results presented in this study suggested that amax was a useful indicator of middle-distance running performance in sub-elite young runners with similar performance levels as well as in top elite athletes. Accepted: 19 August 1997  相似文献   

12.
The ectomycorrhizal (ECM) symbiosis can cause both positive and negative feedback with trees under elevated CO2. Positive feedback arises if the additional carbon (C) increases both nutrient uptake by the fungus and nutrient transfer to the plant, whereas negative feedback results from increased nutrient uptake and immobilization by the fungus and reduced transfer to the plant. Because species of ECM fungi differ in their C and nitrogen (N) demand, understanding fungal species‐specific responses to variation in C and N supply is essential to predict impacts of global change. We investigated fungal species‐specific responses of ECM Scots pine (Pinus sylvestris) seedlings under ambient and elevated CO2 (350 or 700 μL L−1 CO2) and under low and high mineral N availability. Each seedling was associated with one of the following ECM species: Hebeloma cylindrosporum, Laccaria bicolor and Suillus bovinus. The experiment lasted 103 days. During the final 27 days, seedlings were labeled with 14CO2 and 15N. Most plant and fungal parameters were significantly affected by fungal species, CO2 level and N supply. Interactions between fungal species and CO2 were also regularly significant. At low N availability, elevated CO2 had the smallest impact on the photosynthetic performance of seedlings inoculated with H. cylindrosporum and the largest impact on seedlings with S. bovinus. At ambient CO2, increasing N supply had the smallest impact on seedlings inoculated with S. bovinus and the largest on seedlings inoculated with H. cylindrosporum. At low N availability, extraradical hyphal length increased after doubling CO2 level, but this was significant only for L. bicolor. At ambient CO2, increasing N levels reduced hyphal length for both H. cylindrosporum and S. bovinus, but not for L. bicolor. We discuss the potential interplay of two major elements of global change, elevated CO2 and increased N availability, and their effects on plant growth. We conclude that increased N supply potentially relieves mycorrhiza‐induced progressive N limitation under elevated CO2.  相似文献   

13.
Scots pine (Pinus sylvestris L.) seedlings inoculated or not (NM) by a Zn-sensitive or a Zn-tolerant isolate of the ectomycorrhizal fungus Suillus bovinus (L. Fr.) Roussel were exposed to 0.1 or 150 μM Zn2+ for 9 months. We hypothesized that inoculation with a Zn-tolerant S. bovinus isolate should result in added Zn resistance of the host plant. Plant and fungal growth as well as nutrient profiles and photosynthetic pigments in pine needles were quantified. In NM plants and in plants colonized by the Zn-sensitive isolate, plant growth, N, P, Mg and Fe assimilation were strongly inhibited under Zn stress and concurred with significantly reduced chlorophyll concentrations. In contrast, plants colonized by the Zn-tolerant isolate grew much better and remained physiologically healthier when exposed to elevated Zn. These results provide further evidence for the important role metal-adapted mycorrhizal fungi play as an effective biological barrier against metal toxicity in trees.  相似文献   

14.
Elevated tropospheric CO2 concentrations may increase plant carbon fixation. In ectomycorrhizal trees, a considerable portion of the synthesized carbohydrates can be used to support the mutualistic fungal root partner which in turn can benefit the tree by increased nutrient supply. In this study, Norway spruce seedlings were inoculated with either Piloderma croceum (medium distance “fringe” exploration type) or Tomentellopsis submollis (medium distance “smooth” exploration type). We studied the impact of either species regarding fungal biomass production, seedling biomass, nutrient status and nutrient use efficiency in rhizotrons under ambient and twice-ambient CO2 concentrations. A subset was amended with ammonium nitrate to prevent nitrogen imbalances expected under growth promotion by elevated CO2. The two fungal species exhibited considerably different influences on growth, biomass allocation as well as nutrient uptake of spruce seedlings. P. croceum increased nutrient supply and promoted plant growth more strongly than T. submollis despite considerably higher carbon costs. In contrast, seedlings with T. submollis showed higher nutrient use efficiency, i.e. produced plant biomass per received unit of nutrient, particularly for P, K and Mg, thereby promoting shoot growth and reducing the root/shoot ratio. Under the given low soil nutrient availability, P. croceum proved to be a more favourable fungal partner for seedling development than T. submollis. Additionally, plant internal allocation of nutrients was differently influenced by the two ECM fungal species, particularly evident for P in shoots and for Ca in roots. Despite slightly increased ECM length and biomass production, neither of the two species had increased its capacity of nutrient uptake in proportion to the rise of CO2. This lead to imbalances in nutritional status with reduced nutrient concentrations, particularly in seedlings with P. croceum. The beneficial effect of P. croceum thus diminished, although the nutrient status of its host plants was still above that of plants with T. submollis. We conclude that the imbalances of nutrient status in response to elevated CO2 at early stages of plant development are likely to prove particularly severe at nutrient-poor soils as the increased growth of ECM cannot cover the enhanced nutrient demand. Hyphal length and biomass per unit of ectomycorrhizal length as determined for the first time for P. croceum amounted to 6.9 m cm−1 and 6.0 μg cm−1, respectively, across all treatments.  相似文献   

15.
Chen  C. R.  Condron  L. M.  Sinaj  S.  Davis  M. R.  Sherlock  R. R.  Frossard  E. 《Plant and Soil》2003,256(1):115-130
Vegetative conversion from grass to forest may influence soil nutrient dynamics and availability. A short-term (40 weeks) glasshouse experiment was carried out to investigate the impacts of ryegrass (Lolium perenne) and radiata pine (Pinus radiata) on soil phosphorus (P) availability in 15 grassland soils collected across New Zealand using 33P isotopic exchange kinetics (IEK) and chemical extraction methods. Results from this study showed that radiata pine took up more P (4.5–33.5 mg P pot–1) than ryegrass (1.1–15.6 mg pot–1) from the soil except in the Temuka soil in which the level of available P (e.g., E 1min Pi, bicarbonate extractable Pi) was very high. Radiata pine tended to be better able to access different forms of soil P, compared with ryegrass. There were no significant differences in the level of water soluble P (Cp, intensity factor) between soils under ryegrass and radiata pine, but the levels of Cp were generally lower compared with original soils due to plant uptake. The growth of both ryegrass and radiata pine resulted in the redistribution of soil P from the slowly exchangeable Pi pool (E > 10m Pi, reduced by 31.8% on the average) to the rapidly exchangeable Pi (E 1min-1d Pi, E 1d-10m Pi) pools in most soils. The values of R/r 1 (the capacity factor) were also generally greater in most soils under radiata pine compared with ryegrass. Specific P mineralisation rates were significantly greater for soils under radiata pine (8.4–21.9%) compared with ryegrass (0.5–10.8%), indicating that the growth of radiata pine enhanced mineralisation of soil organic P. This may partly be ascribed to greater root phosphatase activity for radiata pine than for ryegrass. Plant species × soil type interactions for most soil variables measured indicate that the impacts of plant species on soil P dynamics was strongly influenced by soil properties.  相似文献   

16.
Henning Kage 《Plant and Soil》1995,176(2):189-196
An experiment was carried out to determine the relationship between nitrate uptake and nitrogen fixation of faba beans. Therefore inoculated and uninoculated faba beans were grown in nutrient solution with different nitrate concentrations. Nitrate uptake was measured every two days during the growing period. At the end of the experiment the nitrate uptake kinetics were determined with a short time depletion technique and nitrogen fixation was measured with the acetylene reduction method. A limitation of nitrate uptake due to nitrogen fixation was relatively small. Nitrate concentrations of approximately 1 mol m–3 and 5 mol m–3 decreased nitrogen fixation to values of 16% and 1% of the control plants which received no nitrate nitrogen. A reduction of nitrogen fixation was mainly due to a decrease of specific nitrogen fixation per unit nodule weight and to a lesser extent due to a reduction of nodule growth. Only the maximum nitrate influx (Imax) seemed to be influenced by nitrogen fixation. Michaelis-Menten constants (Km) and minimum NO inf3 -concentrations (Cmin) were not significantly influenced by nitrogen fixation.  相似文献   

17.
The present experiment was designed to study the importance of strength and muscle mass as factors limiting maximal oxygen uptake (O2 max ) in wheelchair subjects. Thirteen paraplegic subjects [mean age 29.8 (8.7) years] were studied during continuous incremental exercises until exhaustion on an arm-cranking ergometer (AC), a wheelchair ergometer (WE) and motor-driven treadmill (TM). Lean arm volume (LAV) was estimated using an anthropometric method based upon the measurement of various circumferences of the arm and forearm. Maximal strength (MVF) was measured while pushing on the rim of the wheelchair for three positions of the hand on the rim (−30°, 0° and +30°). The results indicate that paraplegic subjects reached a similar O2 max [1.23 (0.34) l · min−1, 1.25 (0.38) l · min−1, 1.22 (0.18) l · min−1 for AC, TM and WE, respectively] and O2 max /body mass [19.7 (5.2) ml · min−1 · kg−1, 19.5 (6.14) ml · min−1 · kg−1, 19.18 (4.27) ml · min−1 · kg−1 for AC, TM and WE, respectively on the three ergometers. Maximal heart rate f c max during the last minute of AC (173 (17) beats · min−1], TM [168 (14) beats · min−1], and WE [165 (16) beats · min−1], were correlated, but f c max was significantly higher for AC than for TM (P<0.03). There were significant correlations between MVF and LAV (P<0.001) and between the MVF data obtained at different angles of the hand on the rim [311.9 (90.1) N, 313.2 (81.2) N, 257.1 (71) N, at −30°, 0° and +30°, respectively]. There was no correlation between O2 max and LAV or MVF. The relatively low values of f c max suggest that O2 max was, at least in part, limited by local aerobic factors instead of central cardiovascular factors. On the other hand, the lack of a significant correlation between O2 max and MVF or muscle mass was not in favour of muscle strength being the main factor limiting O2 max in our subjects. Accepted: 31 January 1997  相似文献   

18.
Bhadoria  P.S.  El Dessougi  H.  Liebersbach  H.  Claassen  N. 《Plant and Soil》2004,262(1-2):327-336
Phosphorus acquisition efficiency of maize (Zea mays L.) and groundnut (Arachis hypogaea L.) was investigated in a flowing nutrient solution culture at constant P concentrations of 0.2, 1 and 100 μM. To calculate the P influx and study changes in plant growth and P uptake in relation to plant age, four harvests were taken. Phosphorus uptake kinetics of the roots, i.e. maximum influx, I\max, the Michaelis constant, Km, and the minimum concentration, CLmin (the concentration at which no net uptake occurs) were estimated in a series of short-term experiments, based on the rate of depletion of P from solution over a range of concentrations. At 1 μM P, maize was more P efficient producing up to 90% of its maximum yield as compared to groundnut with only 20% of maximum yield. A 3 times faster P uptake rate was the reason for the maize P efficiency. In contrast for groundnut at 1 μM P, a net efflux was observed at some development stages of this crop indicating a much higher P requirement at the root surface for maximum growth. Maize had a 6 times higher I\max value and a 2 times higher Km value as compared to groundnut. The higher influx of maize was mainly because of the higher I\max. Maize previously grown at low P concentrations had a CLmin of 0.1 μM, while groundnut had values of 0.2 and 0.6 μM. Furthermore groundnut previously grown at 100 μM, was not able to absorb P even at 40 μM. Acclimation to low P concentrations in solution by increasing I\max or decreasing Km was not evident in this study. Differences in P acquisition efficiency between maize and groundnut in solution culture were mainly because of differences in P-uptake kinetics, and to a lesser extent to the size of the root system.  相似文献   

19.
 Nitrogen deposition and intentional forest fertilisation with nitrogen are known to affect the species composition of ectomycorrhizal fungal communities. To learn more about the mechanisms responsible for these effects, the relations between fungal growth, nitrogen uptake and nitrogen availability were studied in ectomycorrhizal fungi in axenic cultures and in symbiosis with pine seedlings. Effects of different levels of inorganic nitrogen (NH4) on the mycelial growth of four isolates of Paxillus involutus and two isolates of Suillus bovinus were assessed. With pine seedlings, fungal uptake of 15N-labelled NH4 was studied in short-term incubation experiments (72 h) in microcosms and in long-term incubation experiments (3 months) in pot cultures. For P. involutus growing in symbiosis with pine seedlings, isolates with higher NH4 uptake were affected more negatively at high levels of nitrogen availability than isolates with lower uptake. More NH4 was allocated to shoots of seedlings colonised by a high-uptake isolate, indicating transfer of a larger fraction of assimilated NH4 to the host than with isolates showing lower NH4 uptake rates. Thus low rates of N uptake and N transfer to the host may enable EM fungi avoid stress induced by elevated levels of nitrogen. Seedlings colonised by S. bovinus transferred a larger fraction of the 15N label to the shoots than seedlings colonised by P. involutus. Seedling shoot growth probably constituted a greater carbon sink in pot cultures than in microcosms, since the mycelial growth of P. involutus was more sensitive to high NH4 in pots. There was no homology in mycelial growth rate between pure culture and growth in symbiosis, but N uptake in pure culture corresponded to that during growth in symbiosis. No relationship was found between deposition of antropogenic nitrogen at the sites of origin of the P. involutus isolates and their mycelial growth or uptake of inorganic nitrogen. Accepted: 18 September 1998  相似文献   

20.
From measurements of the rates of depletion of labelled ions from solution in the low concentration range, we described the phosphate and potassium uptake characteristics of the roots of intact barley plants in terms of the kinetic parameters, K m and I max (the maximum rate of uptake). In relatively young (13 d) and older (42 d) plants, cessation of phosphate supply for 4 d or more caused a marked increase in I max (up to four times), without concomitant change in K m, which remained between 5 and 7 M. By contrast, 1 d of potassium starvation with 14-d plants caused a decline in the K m (i.e. an increased apparent affinity for potassium) from 53 M to 11 M, without alteration to I max. After longer periods of potassium starvation, I max increased (about two times) while the K m remained at the same low value. Growth of shoots and roots were unaffected by these treatments, so that concentrations of ions in the tissues declined after 1 d or more of nutrient starvation, but we could not identify a characteristic endogenous concentration for either nutrient at which changes in kinetic parameters were invariably induced. The possible mechanisms regulating carriermediated transport, and the importance of changes induced in kinetic parameters in ion uptake from solution and soil are discussed.Symbol I max the maximum rate of absorption at saturating concentrations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号