首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogenases and hydrogen metabolism of cyanobacteria.   总被引:11,自引:0,他引:11  
Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to both take up and produce hydrogen. This review summarizes our knowledge about cyanobacterial hydrogenases, focusing on recent progress since the first molecular information was published in 1995. It presents the molecular knowledge about cyanobacterial hupSL and hoxFUYH, their corresponding gene products, and their accessory genes before finishing with an applied aspect--the use of cyanobacteria in a biological, renewable production of the future energy carrier molecular hydrogen. In addition to scientific publications, information from three cyanobacterial genomes, the unicellular Synechocystis strain PCC 6803 and the filamentous heterocystous Anabaena strain PCC 7120 and Nostoc punctiforme (PCC 73102/ATCC 29133) is included.  相似文献   

2.
3.
4.
Several unicellular and filamentous, nitrogen-fixing and non-nitrogen-fixing cyanobacterial strains have been investigated on the molecular and the physiological level in order to find the most efficient organisms for photobiological hydrogen production. These strains were screened for the presence or absence of hup and hox genes, and it was shown that they have different sets of genes involved in H2 evolution. The uptake hydrogenase was identified in all N2-fixing cyanobacteria, and some of these strains also contained the bidirectional hydrogenase, whereas the non-nitrogen fixing strains only possessed the bidirectional enzyme. In N2-fixing strains, hydrogen was mainly produced by the nitrogenase as a by-product during the reduction of atmospheric nitrogen to ammonia. Therefore, hydrogen production was investigated both under non-nitrogen-fixing conditions and under nitrogen limitation. It was shown that the hydrogen uptake activity is linked to the nitrogenase activity, whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependent or even related to diazotrophic growth conditions. With regard to large-scale hydrogen evolution by N2-fixing cyanobacteria, hydrogen uptake-deficient mutants have to be used because of their inability to re-oxidize the hydrogen produced by the nitrogenase. On the other hand, fermentative H2 production by the bidirectional hydrogenase should also be taken into account in further investigations of biological hydrogen production.Abbreviations Chl chlorophyll - MV methyl viologen  相似文献   

5.
In N2-fixing cyanobacteria, the reduction of N2 to NH3 is coupled with the production of molecular hydrogen, which is rapidly consumed by an uptake hydrogenase, an enzyme that is present in almost all diazotrophic cyanobacteria. The cellular and subcellular localization of the cyanobacterial uptake hydrogenase remains uncertain, and it is definitely strain dependent. Previous studies focused mainly on heterocystous cyanobacteria and used heterologous antisera. The present work represents the first effort to establish the subcellular localization of the uptake hydrogenase in a N2-fixing filamentous nonheterocystous cyanobacterium, Lyngbya majuscula CCAP 1446/4, using the first antiserum produced against a cyanobacterial uptake hydrogenase. The data obtained revealed higher specific labelling associated with the thylakoid membranes of L. majuscula , reinforcing the idea that the cyanobacterial uptake hydrogenase is indeed a membrane-bound protein. For comparative purposes, the localization of the uptake hydrogenase was also investigated in two distinct heterocystous cyanobacterial strains, and while in Nostoc sp. PCC 7120 the labelling was only observed in the heterocysts, in Nostoc punctiforme , the presence of uptake hydrogenase antigens was detected in both the vegetative cells and heterocysts, corresponding most probably to an inactive and an active form of the enzyme.  相似文献   

6.
7.
8.
Cyanobacteria are oxygenic photosynthetic prokaryotes and play a crucial role in the Earth's carbon and nitrogen cycles. The photoautotrophic cyanobacterium Anabaena sp. PCC 7120 has the ability to fix atmospheric nitrogen in heterocysts and produce hydrogen as a byproduct through a nitrogenase. In order to improve hydrogen production, mutants from Anabaena sp. PCC 7120 are constructed by inactivation of the uptake hydrogenase (ΔhupL) and the bidirectional hydrogenase (ΔhoxH) in previous studies. Here the proteomic differences of enriched heterocysts between these mutants cultured in N2‐fixing conditions are investigated. Using a label‐free quantitative proteomics approach, a total of 2728 proteins are identified and it is found that 79 proteins are differentially expressed in the ΔhupL and 117 proteins in the ΔhoxH variant. The results provide for the first time comprehensive information on proteome regulation of the uptake hydrogenase and the bidirectional hydrogenase, as well as systematic data on the hydrogen related metabolism in Anabaena sp. PCC 7120.  相似文献   

9.
Nitrogenase-mediated H(2) accumulation of Rhodobacter sphaeroides under photoheterotrophic conditions is reduced directly by the hydrogenase activity catalyzing H(2) uptake and indirectly by energy-demanding metabolic processes such as poly-beta-hydroxybutyrate (PHB) formation. H(2) accumulation of R. sphaeroides was examined during cell growth under illumination of 15, 7, and 3 W/m(2). Mutations in either hupSL (H(2)-uptake hydrogenase) or phbC (PHB synthase) had no effect on nitrogenase activity. The nitrogenase activity of R. sphaeroides grown at 15 W/m(2), however, was 70% higher than that of cells grown at 3 W/m(2), while the H(2)-uptake hydrogenase activity was approximately 3-fold higher in the same comparison. Accordingly, H(2) uptake by hydrogenase, monitored by measuring the difference in H(2) accumulation between a hupSL-deletion mutant and the corresponding parental strain, appeared to reach a maximum level as illumination was increased to 15 W/m(2). On the other hand, the surplus energy due to lack of PHB formation led to a fixed increase in H(2) accumulation independent of light intensity, reflecting the fact that the cellular PHB content was not changed significantly depending on light intensity. Therefore, H(2) uptake by hydrogenase should be suppressed to achieve higher H(2) accumulation of R. sphaeroides, especially at 15 W/m(2).  相似文献   

10.

Background

Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase.

Results

An engineered strain lacking a functional uptake hydrogenase (?hupS) produced about 4-folds more hydrogen than the wild type strain. Moreover, the ?hupS strain showed long term, sustained hydrogen production under light exposure with 2–3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ?hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ?hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ?hupS strain.

Conclusions

Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.
  相似文献   

11.
12.
微藻光合作用制氢——能源危机的最终出路?   总被引:11,自引:0,他引:11  
微藻光合作用制氢是解决能源短缺问题的有效途径.本文介绍了微藻光合作用制氢的机理,包括蓝藻固氮酶和可逆氢酶产氢以及绿藻可逆氢酶产氢的机理.在分析光合制氢限制因素的基础上,指出筛选和构建高效放氢藻株是制氢的有效途径.然后介绍了“直接生物光解”、固氮酶放氢和“间接生物光解”等制氢方式.利用绿藻“间接生物光解”水制氢是一种最有发展潜力的制氢方式.本文最后展望了微藻光合制氢的前景.  相似文献   

13.
In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.  相似文献   

14.
15.
16.
Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the hox-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed.  相似文献   

17.
浑球红假单胞菌野生型菌株的氢酶表达被有机碳、氮底物所抑制。在光照和黑暗时,氧浓度变化对氢酶的作用不同,但高氧浓度都阻遏氢酶的表达。微量Ni~(2+)能专一性地促进氢酶活性,固氮酶的产氢也可以调节氢酶的表达水平。该野生菌株的GOGAT突变株缺乏固氮酶和氢酶活性,在加入谷氨酰胺合成酶抑制剂MSX后,固氮酶和氢酶以相关联的方式合成出来,固氮酶产生的氢看来诱导了氢酶的合成。然而在固氮酶不表达的情况下,外源氢也可诱导氢酶的合成。  相似文献   

18.
Rhizobium leguminosarum bv. viciae UPM791 induces hydrogenase activity in pea (Pisum sativum L.) bacteroids but not in free-living cells. The symbiotic induction of hydrogenase structural genes (hupSL) is mediated by NifA, the general regulator of the nitrogen fixation process. So far, no culture conditions have been found to induce NifA-dependent promoters in vegetative cells of this bacterium. This hampers the study of the R. leguminosarum hydrogenase system. We have replaced the native NifA-dependent hupSL promoter with the FnrN-dependent fixN promoter, generating strain SPF25, which expresses the hup system in microaerobic free-living cells. SPF25 reaches levels of hydrogenase activity in microaerobiosis similar to those induced in UPM791 bacteroids. A sixfold increase in hydrogenase activity was detected in merodiploid strain SPF25(pALPF1). A time course induction of hydrogenase activity in microaerobic free-living cells of SPF25(pALPF1) shows that hydrogenase activity is detected after 3 h of microaerobic incubation. Maximal hydrogen uptake activity was observed after 10 h of microaerobiosis. Immunoblot analysis of microaerobically induced SPF25(pALPF1) cell fractions indicated that the HupL active form is located in the membrane, whereas the unprocessed protein remains in the soluble fraction. Symbiotic hydrogenase activity of strain SPF25 was not impaired by the promoter replacement. Moreover, bacteroids from pea plants grown in low-nickel concentrations induced higher levels of hydrogenase activity than the wild-type strain and were able to recycle all hydrogen evolved by nodules. This constitutes a new strategy to improve hydrogenase activity in symbiosis.  相似文献   

19.
Franziska Gutthann 《BBA》2007,1767(2):161-169
In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.  相似文献   

20.
Hydrogenase activity was found in cells of Rhodopseudomonas capsulata strain B10 cultured under a variety of growth conditions either anaerobically in the light or aerobically in the dark. The highest activities were found routinely in cells grown in the presence of H2. The hydrogenase of R. capsulata was localized in the particulate fraction of the cells. High hydrogenase activities were usually observed in cells possessing an active nitrogenase. The hydrogen produced by the nitrogenase stimulated the activity of hydrogenase in growing cells. However, the synthesis of hydrogenase was not closely linked to the synthesis of nitrogenase. Hydrogenase was present in dark-grown cultures, whereas nitrogenase synthesis was not significant in the absence of light. Unlike nitrogenase, hydrogenase was present in cultures grown on NH4+. Conditions were established which allowed the synthesis of either nitrogenase or hydrogenase by resting cells. We concluded that hydrogenase can be synthesized independently of nitrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号