首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The ability of Staphylococcus aureus to bind to fibrinogen and fibrin is believed to be an important factor in the initiation of foreign-body and wound Infections. Recently, we reported the cloning and sequencing of the gene clfA encoding the fibrinogen receptor (clumping factor, ClfA) of S. aureus strain Newman and showed that the gene product was responsible for the clumping of bacteria in soluble fibrinogen and for the adherence of bacteria to solid-phase fibrinogen. This was confirmed here by showing that antibodies raised against purified Region A inhibited both of these properties. Also, immunofluorescent microscopic analysis of wild-type Newman and a clfA::Tn917 mutant of Newman with anti-ClfA Region A sera confirmed that Region A is exposed on the bacterial cell surface. Furthermore, polystyrene beads coated with the Region A protein formed clumps in soluble fibrinogen showing that the ClfA protein alone is sufficient for the clumping phenotype. Western immunoblotting with anti-ClfA Region A antibodies identified the native ClfA receptor as a 185 kDa protein that was released from the cell wall of S. aureus by lysostaphin treatment. A single extensive ligand-binding site was located within Region A of the ClfA protein. Truncated ClfA proteins were expressed in Escherichia coli. Lysates of E. coli and proteins that had been purified by affinity chromatography were tested for (i) their ability to bind fibrinogen in Western ligand blotting experiments, (ii) for their ability to inhibit clumping of bacteria in fibrinogen solution and adherence of bacteria to solid-phase fibrinogen, and (iii) for their ability to neutralize the blocking activity of anti-ClfA Region A antibody. These tests allowed the ligand-binding domain to be localized to a 218-residue segment (residues 332-550) within Region A.  相似文献   

2.
The surface-located fibrinogen-binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall-anchored region. Southern blotting experiments revealed several other loci in the S. aureus Newman genome that hybridized to a probe comprising DNA encoding the dipeptide repeat. One of these loci is analysed here. It also encodes a fibrinogen-binding protein, which we have called ClfB. The overall organization of ClfB is very similar to that of ClfA, and the proteins have considerable sequence identity in the signal sequence and wall attachment domains. However, the A regions are only 26% identical. Recombinant biotinylated ClfB protein bound to fibrinogen in Western ligand blots. ClfB reacted with the α- and β-chains of fibrinogen in the ligand blots in contrast to ClfA, which binds exclusively to the γ-chain. Analysis of proteins released from the cell wall of S. aureus Newman by Western immunoblotting using antibody raised against the recombinant A region of ClfB identified a 124 kDa protein as the clfB gene product. This protein was detectable only on cells that were grown to the early exponential phase. It was absent from cells from late exponential phase or stationary phase cultures. Using a clfB mutant isolated by allelic replacement alone and in combination with a clfA mutation, the ClfB protein was shown to promote (i) clumping of exponential-phase cells in a solution of fibrinogen, (ii) adherence of exponential-phase bacteria to immobilized fibrinogen in vitro, and (iii) bacterial adherence to ex vivo human haemodialysis tubing, suggesting that it could contribute to the pathogenicity of biomaterial-related infections. However, in wild-type exponential-phase S. aureus Newman cultures, ClfB activity was masked by the ClfA protein, and it did not contribute at all to interactions of cells from stationary-phase cultures with fibrinogen. ClfB-dependent bacterial adherence to immobilized fibrinogen was inhibited by millimolar concentrations of Ca2+ and Mn2+, which indicates that, like ClfA, ligand binding by ClfB is regulated by a low-affinity inhibitory cation binding site.  相似文献   

3.
Clumping factor of Staphylococcus aureus is a fibrinogen-binding protein that is located on the bacterial cell surface. The protein has an unusual repeat domain (region R) comprising mainly the dipeptide aspartate and serine. To determine if region R has a role in the surface display of the fibrinogen-binding region A domain, deletions lacking the region R encoding region of the clfA gene were generated. To determine the minimum length of region R required for wild-type levels of ClfA expression, variants with truncated region R domains were constructed. S. aureus cells expressing mutated clfA genes were tested for (i) proteins released by lysostaphin treatment that reacted with antisera specific for region A, (ii) clumping in soluble fibrinogen, (iii) adherence to immobilized fibrinogen and (iv) expression of the ClfA antigen on the cell surface by fluorescent activated cell sorting analysis. Each construct expressed three major immunoreactive proteins, two of which were putative N-terminal degradation products. Region R residues greater than 40 were required between region A and W (72 residues between region A and the LPDTG sorting signal) for wild-type levels of clumping in fibrinogen. A stepwise decrease in clumping titre was observed as the distance between region A and LPDTG was decreased from 72 to 4 residues. Similarly, a decrease in binding of anti-ClfA serum and in binding to fibrinogen-coated plastic surfaces was observed with cells expressing ClfA with 40 region R residues or less. Nevertheless, low levels of adherence to fibrinogen and binding to anti-ClfA serum occurred with ClfA derivatives that lacked region R altogether. This indicates that a small proportion of the ClfA molecules are linked to peptidoglycan very close to the cell surface but that residues greater than 72 are needed to allow sufficient ClfA molecules to span the entire cell wall and to display the biologically active A domain in a form that can participate fully in fibrinogen binding.  相似文献   

4.
Staphylococcus aureus has been shown to interact specifically with fibrinogen. Three different extracellular fibrinogen-binding proteins, two of which have coagulase activity, are produced by S. aureus strain Newman. The role of these fibrinogen-binding proteins during staphylococcal colonization and infection has not yet been fully elucidated. Here we describe the cloning, sequencing and expression of a gene for a 19kDa fibrinogen-binding protein. This gene, called fib, encodes a 165-amino-acid polypeptide, including a 29-amino-acid signal sequence. The recombinant protein, which has an estimated molecular mass of 15.9kDa, bound fibrinogen and was recognized by a polyclonal antiserum against the native Fib protein. Homologies between the Fib protein and the fibrinogen-binding domain of coagulase suggest that amino acids within this domain are involved in the binding to fibrinogen.  相似文献   

5.
A deletion of the sigB operon was constructed in three genetically distinct Staphylococcus aureus strains, and the phenotypes of the resulting mutants were analyzed. Compared to the corresponding wild-type strains, the ΔsigB mutants showed reduced pigmentation, accelerated sedimentation, and increased sensitivity to hydrogen peroxide during the stationary growth phase. A cytoplasmic protein missing in the ΔsigB mutants was identified as alkaline shock protein 23, and an extracellular protein excreted at higher levels in one of the ΔsigB mutants was identified as staphylococcal thermonuclease. Interestingly, most sigB deletion phenotypes were only seen in S. aureus COL and Newman and not in 8325, which was found to contain an 11-bp deletion in the regulator gene rsbU. Taken together, our results show that ςB is a global regulator which modulates the expression of several virulence factors in S. aureus and that laboratory strain 8325 is a ςB-defective mutant.  相似文献   

6.
The fibronectin binding protein, FnBPA, is a multifunctional microbial surface component recognizing adhesive matrix molecule (MSCRAMM) that promotes bacterial adherence to immobilized fibrinogen and elastin via the N-terminal A domain. The binding site for fibrinogen and elastin was localized to subdomains N2N3. A three-dimensional structural model of FnBPA was created based on the known crystal structure of the domains N2N3 of clumping factor A (ClfA). The role of individual residues in the putative ligand binding trench was examined by testing the affinity of mutants for fibrinogen and elastin. Two residues (N304 and F306) were crucial for binding both ligands and are in the equivalent positions to residues known to be important for fibrinogen binding by ClfA. A peptide comprising the C-terminus of the gamma-chain of fibrinogen and a monoclonal anti-rAFnBPA antibody were potent inhibitors of the FnBPA-elastin interaction. This suggests that FnBPA binds to fibrinogen and elastin in a similar manner. Amino acid sequence divergence of 26.5% occurred between the A domains of FnBPA from strains 8325-4 and P1. Most variant residues were predicted to be located on the surface of domains N2N3 while few occurred in the putative ligand binding trench and the latching peptide explaining limited immunocross reactivity while ligand binding activity is conserved.  相似文献   

7.
Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI) tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA) mutant (ΔtagO) failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl) tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin.  相似文献   

8.
We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336) and Y(338), were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336)Y(338) mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336)Y(338) mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336) and Y(338) were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336)Y(338) mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336)SY(338)A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.  相似文献   

9.
Aims: To provide comparative genome sequence data for two related model strains of Staphylococcus aureus (SH1000 and 8325‐4) that are used extensively in laboratory research. Methods and Results: Comparative genome sequencing was used to identify genetic differences between Staph. aureus SH1000 and the fully genome‐sequenced ancestral strain, Staph. aureus NCTC 8325. PCR amplification and DNA sequencing were employed to determine which of the genetic polymorphisms identified were also present in Staph. aureus 8325‐4, a direct derivative of 8325 and the parent strain of SH1000. Aside from known genetic differences between these strains, Staph. aureus SH1000 harboured 15 single‐nucleotide polymorphisms compared with 8325 (of which 12 were also found in 8325‐4), and a 63‐bp deletion upstream of the spa gene not present in either 8325 or 8325‐4. Conclusions: Staphylococcus aureus SH1000 and 8325‐4 contain a number of genetic polymorphisms relative to the progenitor strain of the lineage (8325) and to each other. Significance and Impact of the Study: The comparative genome sequences of SH1000 and 8325‐4 presented here define the genotypes of two key strains in staphylococcal laboratory research and reveal genetic polymorphisms that may impact their phenotypic properties.  相似文献   

10.

Background  

Fibronectin-binding protein A (FnBPA) mediates adhesion of Staphylococcus aureus to fibronectin, fibrinogen and elastin. We previously reported that S. aureus strain P1 encodes an FnBPA protein where the fibrinogen/elastin-binding domain (A domain) is substantially divergent in amino acid sequence from the archetypal FnBPA of S. aureus NCTC8325, and that these variations created differences in antigenicity. In this study strains from multilocus sequence types (MLST) that spanned the genetic diversity of S.aureus were examined to determine the extent of FnBPA A domain variation within the S. aureus population and its effect on ligand binding and immuno-crossreactivity.  相似文献   

11.
Staphylococcus aureus is a successful pathogen in part because the bacterium can adapt rapidly to selective pressures imparted by the external environment. Horizontal gene transfer (HGT) plays an integral role in the evolution of bacterial genomes, and phage transduction is likely to be the most common and important HGT mechanism for S. aureus. Phage can transfer not only its own genome DNA but also host bacterial DNA with or without pathogenicity islands to other bacteria. Here, we demonstrate that the staphylococcal prophage ?NM2 could transfer between strains Newman and NCTC8325/NCTC8325-4 by simulating a natural situation in laboratory without mitomycin C or ultra-violet light treatment. This transference may be caused by direct contact between Newman and NCTC8325/NCTC8325-4 instead of phage particles released in Newman culture’s supernatant. The rates of successful horizontal genetic transfer in recipients NCTC8325 and NCTC8325-4 were 2.1% and 1.8%, respectively. Prophage ?NM2 was integrated with one direction at an intergenic region between rpmF and isdB in all 17 lysogenic isolates. Phage particles were spontaneously released from lysogenic strains again and had no noticeable influence on the growth of host cells. The results reported herein provide insight into how mobile genetic elements such as prophages can lead to the emergence of genetic diversity among S. aureus strains.  相似文献   

12.
【目的】为从免疫的角度比较和分析黏附素分子细胞外纤维蛋白原结合蛋白(Extracellular fibrinogen-binding protein,EfB)和纤维连接蛋白结合蛋A(Fibronection binding protein,FnBP)对聚集因子A(Clumping factor A,ClfA)抑制牛源金黄色葡萄球菌(Staphylococcus aureus,SA)黏附牛乳腺原代上皮细胞作用的增强效果。【方法】本试验分离培养牛乳腺上皮细胞并鉴定;将真核重组质粒EfB和FnBPA分别与ClfA组合免疫新西兰大白兔,并利用免疫后抗体体外抑制2株SA分离株侵染牛乳腺上皮细胞,采用平板计数法定量检测与比较不同免疫组合诱导抗体对黏附的抑制作用;对SA和乳腺上皮细胞分别进行荧光染色,观察不同免疫组合诱导的抗体对黏附抑制效果的差异。【结果】成功分离培养了牛乳腺原代上皮细胞;证明了构建的ClfA、FnBPA和EfB真核重组表达质粒均可在细胞中表达,且在免疫实验兔后可诱导特异性抗体的产生;细菌平板计数和荧光染色观察的结果表明,黏附素分子单独和组合免疫的抗体对该菌不同菌株(GY278和GY309)的黏附抑制能力不同,ClfA抗体的黏附抑制能力最强,FnBPA分子A区的黏附抑制能力优于D区。FnBPA、EfB分别与ClfA联合免疫抗体对黏附的抑制程度高于黏附素分子单独免疫组,FnBPA分子A区对ClfA黏附抑制的增强作用优于D区,FnBPA-A区与Efb相比对ClfA的黏附抑制增强差异不显著。【结论】FnBPA-A、FnBPA-D和EfB分别与ClfA联合免疫可不同程度地影响ClfA的黏附抑制效果,该结果为以黏附素分子为靶点的牛乳腺炎疫苗的研究提供了实验数据。  相似文献   

13.
The increasing frequency, severity and antimicrobial resistance of Staphylococcus aureus infections has made the development of immunotherapies against this pathogen more urgent than ever. Previous immunization attempts using monovalent antigens resulted in at best partial levels of protection against S. aureus infection. We therefore reasoned that synthesizing a bivalent conjugate vaccine composed of two widely expressed antigens of S. aureus would result in additive/synergetic activities by antibodies to each vaccine component and/or in increased strain coverage. For this we used reductive amination, to covalently link the S. aureus antigens clumping factor A (ClfA) and deacetylated poly-N-β-(1-6)-acetyl-glucosamine (dPNAG). Mice immunized with 1, 5 or 10 μg of the dPNAG-ClfA conjugate responded in a dose-dependent manner with IgG to dPNAG and ClfA, whereas mice immunized with a mixture of ClfA and dPNAG developed significantly lower antibody titers to ClfA and no antibodies to PNAG. The dPNAG-ClfA vaccine was also highly immunogenic in rabbits, rhesus monkeys and a goat. Moreover, affinity-purified, antibodies to ClfA from dPNAG-ClfA immune serum blocked the binding of three S. aureus strains to immobilized fibrinogen. In an opsonophagocytic assay (OPKA) goat antibodies to dPNAG-ClfA vaccine, in the presence of complement and polymorphonuclear cells, killed S. aureus Newman and, to a lower extent, S. aureus Newman ΔclfA. A PNAG-negative isogenic mutant was not killed. Moreover, PNAG antigen fully inhibited the killing of S. aureus Newman by antisera to dPNAG-ClfA vaccine. Finally, mice passively vaccinated with goat antisera to dPNAG-ClfA or dPNAG-diphtheria toxoid conjugate had comparable levels of reductions of bacteria in the blood 2 h after infection with three different S. aureus strains as compared to mice given normal goat serum. In conclusion, ClfA is an immunogenic carrier protein that elicited anti-adhesive antibodies that fail to augment the OPK and protective activities of antibodies to the PNAG cell surface polysaccharide.  相似文献   

14.
Strains of Staphylococcus aureus, an important human pathogen, display up to 20% variability in their genome sequence, and most sequence information is available for human clinical isolates that have not been subjected to genetic analysis of virulence attributes. S. aureus strain Newman, which was also isolated from a human infection, displays robust virulence properties in animal models of disease and has already been extensively analyzed for its molecular traits of staphylococcal pathogenesis. We report here the complete genome sequence of S. aureus Newman, which carries four integrated prophages, as well as two large pathogenicity islands. In agreement with the view that S. aureus Newman prophages contribute important properties to pathogenesis, fewer virulence factors are found outside of the prophages than for the highly virulent strain MW2. The absence of drug resistance genes reflects the general antibiotic-susceptible phenotype of S. aureus Newman. Phylogenetic analyses reveal clonal relationships between the staphylococcal strains Newman, COL, NCTC8325, and USA300 and a greater evolutionary distance to strains MRSA252, MW2, MSSA476, N315, Mu50, JH1, JH9, and RF122. However, polymorphism analysis of two large pathogenicity islands distributed among these strains shows that the two islands were acquired independently from the evolutionary pathway of the chromosomal backbones of staphylococcal genomes. Prophages and pathogenicity islands play central roles in S. aureus virulence and evolution.  相似文献   

15.

Background  

The natural habitat of Staphylococcus aureus is the moist squamous epithelium in the anterior nares. About 20% of the human population carry S. aureus permanently in their noses and another 60% of individuals are intermittent carriers. The ability of S. aureus to colonize the nasal epithelium is in part due to expression of surface proteins clumping factor B (ClfB) and the iron-regulated surface determinant A (IsdA), which promote adhesion to desquamated epithelial cells present in the anterior part of the nasal vestibule. S. aureus strain Newman defective in IsdA and ClfB exhibited reduced but not completely defective adherence to squamous cells in indicating that other cell surface components might also contribute.  相似文献   

16.
The elastin-binding proteins EbpS of Staphylococcus aureus strains Cowan and 8325-4 were predicted from sequence analysis to comprise 486 residues. Specific antibodies were raised against an N-terminal domain (residues 1-267) and a C-terminal domain (residues 343-486) expressed as recombinant proteins in Escherichia coli. Western blotting of lysates of wild-type 8325-4 and Newman and the corresponding ebpS mutants showed that EbpS migrated with an apparent molecular mass of 83 kDa. The protein was found exclusively in cytoplasmic membrane fractions purified from protoplasts or lysed cells, in contrast to the clumping factor ClfA, which was cell-wall-associated. EbpS was predicted to have three hydrophobic domains H1-(205-224), H2-(265-280), and H3-(315-342). A series of hybrid proteins was formed between EbpS at the N terminus and either alkaline phosphatase or beta-galactosidase at the C terminus (EbpS-PhoA, EbpS-LacZ). PhoA and LacZ were fused to EbpS between hydrophobic domains H1-H2 and H2-H3, and distal to H3. Expression of enzymatic activity in E. coli showed that EbpS is an integral membrane protein with two membrane-spanning domains H1 and H3. N-terminal residues 1-205 and C-terminal residues 343-486 were predicted to be exposed on the outer face of the cytoplasmic membrane. The ligand-binding domain of EbpS is known from previous studies to be present in the N terminus between residues 14-34 and probing whole cells with anti-EbpS1-267 antibodies indicated that this region is exposed on the surface of intact cells. This was also confirmed by the observation that wild-type S. aureus Newman cells bound labeled tropoelastin whereas the ebpS mutant bound 72% less. In contrast, the C terminus, which carries a putative LysM peptidoglycan-binding domain, is not exposed on the surface of intact cells and presumably remains buried within the peptidoglycan. Finally, expression of EbpS was correlated with the ability of cells to grow to a higher density in liquid culture, suggesting that EbpS may have a role in regulating cell growth.  相似文献   

17.
金黄色葡萄球菌凝集因子A的免疫原性   总被引:1,自引:1,他引:0  
为研究金黄色葡萄球菌(Staphylococcus aureus)凝集因子A(ClfA)免疫原性及免疫保护作用,应用PCR方法扩增出金黄色葡萄球菌Newman、Wood46和HLJ23-1株的clfa基因并进行序列分析,再将Newman株的clfa基因插入到pQE-30载体上,导入宿主菌Escherichia coli M15(pREP4)并诱导表达和纯化ClfA重组蛋白。用纯化的ClfA免疫小鼠,检测血清中抗体和细胞因子水平,首次免疫后35 d时用金黄色葡萄球菌Wood46、HLJ23-1、Newman株对小鼠攻毒。结果发现:clfa基因序列高度保守;ClfA重组蛋白在E.coli M15中获得表达;在首次免疫后35 d时血清抗体效价和细胞因子浓度与对照组相比,均显著升高(P<0.05);攻毒结果为蛋白免疫组小鼠获得一定的免疫保护。由此表明,ClfA重组蛋白有较好的免疫原性和免疫保护力。  相似文献   

18.
Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis.  相似文献   

19.
Many methicillin-resistant (Mecr) strains of Staphylococcus aureus either produce no protein A or secrete it extracellularly (S. Winblad and C. Ericson, Acta Pathol. Microbiol. Scand. Sect. B 81:150–156, 1973). We found that methicillin resistance and protein A production were apparently lost coordinately from the natively Mecr strain A676. Restoration of the genetic determinant for methicillin resistance (mec) by transduction or transformation restored protein A production. In two other Mecr strains, loss of mec was accompanied by marked reduction in protein A formation. Genetic transfer of mec to derivatives of S. aureus 8325 affected protein A formation differently with different mec determinants. Those derived from strain A676 and two other Mecr strains reduced the scanty amount of protein A produced by strain 8325 to even lower or undetectable levels, whereas mec from two more Mecr strains increased its protein A content. This “mec-effect,” i.e., stimulation or inhibition of protein A formation dependent on the combination of host strain and mec determinant, was reduced in methicillin-susceptible (Mecs) mutants produced by ethyl methane sulfonate treatment of Mecr strains. The mec-effect reappeared in spontaneous revertants to methicillin resistance. Phenotypic reduction of methicillin resistance in Mecr strains grown at 44°C was accompanied by reduction of the mec-effect on protein A, but it had no effect on protein A formation in Mecs strains. Two independent mutants of strain 8325 produced large amounts of protein A at rates that were unaffected by growth at 44°C or by the introduction of mec determinants.  相似文献   

20.
Staphylococcus aureus (S. aureus) pathogenesis is a complex process involving a diverse array of extracellular and cell wall components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and its complexes with fibrinogen α (Fg α) and cytokeratin 10 (CK10) peptides. Structural comparison revealed a conserved glycine-serine-rich (GSR) ClfB binding motif (GSSGXGXXG) within the ligands, which was also found in other human proteins such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg α and ClfB-CK10. The results presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号