首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study evaluated the protective effect of astaxanthin (ASX) against high-fat diet (HFD)-induced cardiac damage and fibrosis in rats and examined if the mechanism of protection involves modulating SIRT1. Rat were divided into 5 groups (n = 10/group) as: 1) control: fed normal diet (3.82 kcal/g), 2) control + ASX (200 mg/kg/orally), 3) HFD: fed HFD (4.7 kcal/g), 4) HFD + ASX (200 mg/kg/orally), and HFD + ASX + EX-527 (1 mg/kg/i.p) (a selective SIRT1 inhibitor). All treatments were conducted for 14 weeks. Administration of ASX reduced cardiomyocyte damage, inhibited inflammatory cell infiltration, preserved cardiac fibers structure, prevented collagen deposition and protein levels of TGF-β 1 in the left ventricles (LVs) of HFD-fed rats. In the LVs of both the control and HFD-fed rat, ASX significantly reduced levels of reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and p-smad2/3 (Lys19) but increased the levels of glutathione (GSH), catalase, and manganese superoxide dismutase (MnSOD). Concomitantly, it increased the nuclear activity of Nrf2 and reduced that of NF-κB p65. Furthermore, administration of ASX to both the control and HFD-fed rats increased total and nuclear levels of SIRT1, stimulated the nuclear activity of SIRT1, and reduced the acetylation of Nrf2, NF-κB p65, and Smad3. All these cardiac beneficial effects of ASX in the HFD-fed rats were abolished by co-administration of EX-527. In conclusion, ASX stimulates antioxidants and inhibits markers of inflammation under basal and HFD conditions. The mechanism of protection involves, at least, activation SIRT1 signaling.  相似文献   

2.
The present study examined the anti-obesity effect and mechanism of action of Korean white ginseng extracts (KGE) using high-fat diet (HFD)-induced obese mice. Mice were fed a low-fat diet (LFD), HFD or HFD containing 0.8 and 1.6% (w/w) KGE diet (HFD + 0.8KGE and HFD + 1.6KGE) for 8 weeks. We also examined the effects of KGE on plasma triglyceride (TG) elevation in mice administrated with oral lipid emulsion. Body weight gain and white adipose tissue (WAT) weight were significantly decreased in the HFD + 1.6KGE group, compared with the HFD group. The plasma TG levels were also significantly reduced in both HFD + 0.8KGE and HFD + 1.6KGE groups, while leptin levels were significantly decreased in only the HFD + 1.6KGE group, compared with the HFD group. The HFD + 1.6KGE group showed significantly lower mRNA levels of lipogenesis-related genes, including peroxisome proliferator-activated receptorγ2 (PPARγ2), sterol regulatory element binding protein-1c (SREBP-1c), lipoprotein lipase (LPL), fatty acid synthase (FAS) and diacylglycerol acyltransferase 1 (DGAT1), compared with the HFD group. In addition, a dose of 1000 mg/kg KGE inhibited the elevation of plasma TG levels compared with mice given the lipid emulsion alone. These results suggest that the anti-obesity effects of KGE may be elicited by regulating expression of lipogenesis-related genes in WAT and by delaying intestinal fat absorption.  相似文献   

3.
Obesity is a condition of chronic tissue inflammation and oxidative stress that poses as a risk factor for male infertility. Moringa oleifera oil extract is known to have cholesterol-lowering properties and a potential to treat obesity, while lycopene is a potent antioxidant. We hypothesize that Moringa or lycopene may improve male fertility markers in an animal model of diet-induced obesity. Male Albino rats (n = 60) were randomized to receive regular chow (RC) or high-fat diet (HFD) for 12 weeks (n = 30 each). Animals in each arm were further randomized to receive gavage treatment with corn oil (vehicle), lycopene (10 mg/kg), or Moringa (400 mg/kg) for four weeks starting on week 9 (n = 10 each). Animals were sacrificed at 12 weeks, and blood was collected to assess lipid profile, serum testosterone, and gonadotropin levels. The testes and epididymides were removed for sperm analysis, oxidative stress and inflammatory markers, and histopathological assessment. In comparison to their RC littermates, animals on HFD showed an increase in body weights, serum lipids, testosterone and gonadotrophin levels, testicular oxidative stress and inflammatory markers, as well as sperm abnormalities and disrupted testicular histology. Moringa or lycopene reduced body weight, improved oxidative stress, and male fertility markers in HFD-fed animals with lycopene exhibiting better anti-antioxidant and anti-lipidemic effects. Lycopene is superior to Moringa in improving male fertility parameters, possibly by attenuating oxidative stress.  相似文献   

4.
山葵树叶中含有丰富的矿物质和维生素,体外研究证实山葵树叶提取物具有较好的体外抗氧化活性。然而,山葵树叶提取物在体内的抗氧化和抗疲劳作用尚不明确。本研究分别按照100 mg/kg·bw、200 mg/kg·bw和500 mg/kg·bw的剂量对SD大鼠灌胃山葵树叶提取液4周。研究显示,山葵树叶提取物可以剂量依赖性方式提高大鼠的力竭游泳时间(p<0.05)。山葵树叶提取物可显著降低力竭游泳大鼠血清Lac和BUN水平并升高NEFA水平。山葵树叶提取物可提高大鼠的肝糖原和肌糖原含量。山葵树叶提取物可提高大鼠血清和组织SOD、GSH-Px和CAT水平并降低MDA水平。山葵树叶提取物可上调大鼠肝组织中ORM1、CCR5的m RNA和蛋白水平。本研究表明山葵树叶提取物可有效提高力竭游泳大鼠的抗疲劳能力。山葵树叶提取物的抗疲劳作用与减少乳酸堆积、增加脂肪动员、减少糖原分解、提高抗氧化活性有关。此外,山葵树叶提取物的抗疲劳作用与上调ORM1和CCR5的表达有关。  相似文献   

5.
Excess fat intake induces hyperinsulinaemia, increases nutrient uptake and lipid accumulation, amplifies ROS generation, establishes oxidative stress and morphological changes leading to tissue injury in the liver, kidney and heart of high-fat diet (HFD)-fed mice. The effect of azelaic acid (AzA), a C9 α,ω-dicarboxylic acid, against HFD-induced oxidative stress was investigated by assaying the activities and levels of antioxidants and oxidative stress markers in the liver, kidney and heart of C57BL/6J mice. Mice were segregated into two groups, one fed standard diet (NC) and the other fed high-fat diet (HFD) for 15 weeks. HFD-fed mice were subjected to intragastric administration of AzA (80 mg/kg BW)/RSG (10 mg/kg BW) during 11-15 weeks. Glucose, insulin, triglycerides, hepatic and nephritic markers were analysed in the plasma and the activity of enzymatic, non-enzymatic antioxidants and lipid peroxidation markers were examined in the plasma/erythrocytes, liver, kidney and heart of normal and experimental mice. We inferred significant decrease in enzymatic and non-enzymatic antioxidants along with significant increase in glucose, insulin, hepatic and nephritic markers, triglycerides and lipid peroxidation markers in HFD-fed mice. Administration of AzA could positively restore the levels of plasma glucose, insulin, triglycerides, hepatic and nephritic markers to near normal. AzA increased the levels of enzymatic and nonenzymatic antioxidants with significant reduction in the levels of lipid peroxidation markers. Histopathological examination of liver, kidney and heart substantiated these results. Hence, we put forward that AzA could counteract the potential injurious effects of HFD-induced oxidative stress in C57BL/6J mice.  相似文献   

6.
The present study aimed to evaluate the effect of single-bulb garlic oil (SGO) on toll-like receptors 3 and 4 (TLR3 and TLR 4) and nuclear erythroid factor-like 2 (Nrf2) signaling pathway resulted from a high-fat diet and its underlying mechanism. Twenty-four Balb/c mice allocated into six groups: 1) N: mice fed with standard chow; 2) HFD: mice fed a high-fat diet for 45 days without any treatment; 3) HFD + Simv: mice fed a high-fat diet for 45 days and treated with simvastatin; 4–6) HFD + SGO 100, 200, 400 (mice fed a high-fat diet for 45 days and treated with single-bulb garlic oil at dose: 100, 200, and 400 mg/kg body weight for 30 days), respectively. At the end of treatment, spleen and hepar were isolated. The flow cytometry analysis was performed to analyze the relative number of nrf2, superoxide dismutase (SOD), malondialdehyde (MDA), TLR3, TLR4 and interleukin (IL-17). The results showed that HFD induction significantly reduced Nrf-2 and antioxidant enzyme levels. Furthermore, HFD induction increased TLR3 and TLR4 signaling and IL-17 production. Interestingly, 200 mg/kg BW of SGO increased the relative number Nrf-2 followed by SOD and HO-1 elevation at a dose of 100 mg/kg BW. SGO100 notably decrease the relative number of TLR3 (CD11b+TLR3+) and TLR4 (CD11b+TLR4+). The production of IL-17 by CD4 and CD8 were also reduced after receiving SGO at 200 mg/kg BW. This study suggests that the protective effect of SGO treatment on HFD mice was achieved by modulating TLR-Nrf2 cross-talks and decreasing IL-17 production. Our findings support a potential beneficial role of SGO for treating metabolic disease caused by a high-fat diet.  相似文献   

7.
Azelaic acid (AzA), a C9 linear α,ω-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM.  相似文献   

8.
Present research explored the anti-obesity effect of Moringa olifera seed oil extract and lycopene (LYC). Forty eight male Sprauge Dawely rats were divided equally into 6 groups. Group Ι (C) served as control, group ΙΙ (MC) was given Moringa olifera seed oil extract (800 mg/kg b.wt) for 8 weeks, group ΙΙΙ (LC) was given (20 mg/kg b.wt) LYC for 8 weeks, group ΙV (O) received high fat diet (HFD) for 20 weeks, group Ѵ (MO), was given HFD for 20 weeks and received (800 mg/kg b.wt) Moringa olifera seed oil extract for last 8 weeks and group ѴΙ (LO), received HFD for 20 weeks and was given (20 mg/kg b.wt) LYC for last 8 weeks. Hematology, lipid peroxidation and antioxidants, non-esterified fatty acids (NEFA), glucose, lipid profile, serum liver and kidney biomarkers, inflammatory markers, leptin, resistin and heart fatty acid binding protein (HFABP) were determined. Also histopathology for liver, kidney and aorta were performed besides immunohistochemistry (IHC) for aortic inducible nitric oxide synthase (iNOS). Administration of Moringa olifera seed oil extract and LYC significantly ameliorated the HFD induced hematological and metabolic perturbations as well as reduced leptin and resistin. Both treatments exerted these effects through promotion of antioxidant enzymes and reducing lipid peroxidation as well as inflammatory cytokines along with reduced iNOS protein expression. Administration of Moringa olifera seed oil extract and LYC have anti-obesity potential in HFD induced obesity in male Sprauge Dawely rats.  相似文献   

9.
Cisplatin is one of the most widely used chemotherapeutic anti-cancer drugs that is associated with multiple systemic toxicities limiting its use. The present study aimed to evaluate the hepato-protective effect of hesperidin against cisplatin-induced toxicity. Thirty-two adult male albino rats were equally split into four groups, the first group served as control received normal saline, the second group (CIS) received a single intraperitoneal dose of cisplatin (7.5 mg/kg bw) on the 22nd day of the experiment, the third group (HES) treated once daily with hesperidin (200 mg/kg bw, orally) for 21 days, and the last group (HES + CIS) pretreated once daily with hesperidin followed by a single intraperitoneal dose of cisplatin. Twenty-four hours later, samples were collected for further investigations. CIS-intoxication resulted in a significant decrease in the erythrogram along with thrombocytopenia leukopenia, and lymphopenia. Furthermore, CIS administration significantly elevated serum activity of liver enzymes, total, and indirect bilirubin as well serum glucose, total cholesterol, and triglycerides levels, meanwhile serum total protein, and globulin levels were significantly reduced. The hepatic MDA was markedly elevated with a concomitant decline in the hepatic antioxidant enzymes and severe alterations in the hepatic tissue architecture in CIS-intoxicated rats. Additionally, CIS-induced overexpression of hepatic Bax, caspase-3, and TNF-α, with no effect on hepatic expression of IL-10. Interestingly, HES pretreatment improved the CIS-induced hemato-biochemical, molecular and histopathological alterations. In conclusion, hesperidin hepato-protective effects against CIS might be mediated by its antioxidant, anti-inflammatory, and anti-apoptotic properties.  相似文献   

10.
The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor δ (PPARδ) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPARδ protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also protected against the development of nonalcoholic fatty liver by decreasing hepatic triglyceride accumulation. Consistent with the in vitro results, PRPA activated AMPK signaling and altered the expression of lipid metabolism-related proteins in liver and skeletal muscle. Taken together, these findings demonstrate that PRPAs attenuate HFD-induced obesity by activating AMPK and PPARδ, and regulate lipid metabolism, suggesting their potential anti-obesity effects.  相似文献   

11.
Obesity is associated with several diseases including diabetes, nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease, and cancer. Therefore, anti-obesity drugs have the potential to prevent these diseases. In the present study, we demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited therapeutic potency against obesity. Mice were fed a high-fat diet (HFD) for 6 months, followed by a normal-chow diet (NCD). The flurbiprofen treatment simultaneously administered. Although body weight was significantly decreased in flurbiprofen-treated mice, growth was not affected. Flurbiprofen also reduced the HFD-induced accumulation of visceral fat. Leptin resistance, which is characterized by insensitivity to the anti-obesity hormone leptin, is known to be involved in the development of obesity. We found that one of the possible mechanisms underlying the anti-obesity effects of flurbiprofen may have been mediated through the attenuation of leptin resistance, because the high circulating levels of leptin in HFD-fed mice were decreased in flurbiprofen-treated mice. Therefore, flurbiprofen may exhibit therapeutic potential against obesity by reducing leptin resistance.  相似文献   

12.
Obesity is an increasingly prevalent disease worldwide, and genetic and environmental factors are known to regulate the development of obesity and associated metabolic diseases. Emerging studies indicate that innate and adaptive immune cell responses in adipose tissue play critical roles in the regulation of metabolic homeostasis. Parasitic helminths are the strongest natural inducers of type 2 inflammatory responses, and several studies have revealed that helminth infections inversely correlate with metabolic syndrome. Hence, this study investigated whether helminth infections could have preventative effects on high fat diet-induced obesity. Female C57BL/6 mice were maintained on either a low fat diet (LFD, 10% fat) or a high fat diet (HFD, 60% fat) for 6 weeks after Trichinella spiralis infection. The mice were randomly divided into four groups and were fed a normal diet, LFD, LFD after T. spiralis infection (Inf + LFD), a high fat diet (HFD), or HFD after T. spiralis infection (HFD + inf). All groups were assayed for body weight, food efficiency ratio (FER), total body weight gain (g)/total food intake amount (g) fat weight, and blood biochemical parameters. Our data indicate that the HFD + inf group significantly reduced body weight gain, fat mass, total cholesterol, and FER. Analysis of immune cell composition by flow cytometry revealed that T. spiralis promoted strong decreases in proinflammatory adipose macrophages (F4/80+CD11c+) and T cells. The alterations in microbiota from fecal samples of mice were analyzed, which showed that T. spiralis infection decreased the ratio of Firmicutes to Bacteriodetes, thereby restoring the previously increased ratio of Firmicutes to Bacteriodetes in HFD-fed mice. Moreover, elimination of T. spiralis retained the protective effects in the HFD-fed obese mice whereas flubendazole (FLBZ) treatment increased levels of the families Lachnospiraceae and Ruminococcaceae. In summary, we provided novel data suggesting that helminth infection protects against obesity and the protection was closely related to M2 macrophage proliferation, an inhibiting proinflammatory response. In addition, it alters the microbiota in the gut.  相似文献   

13.
This study examined the anti-obesity effect and mechanism of action of blueberry peel extracts (BPE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. The levels of lipid accumulation were measured, along with the changes in the expression of genes and proteins associated with adipocyte differentiation in 3T3-L1 cells. Evidenced by Oil-red O staining and triglyceride assay, BPE dose-dependently inhibited lipid accumulation at concentrations of 0, 50, and 200 µg/ml. BPE decreased the expression of the key adipocyte differentiation regulator C/EBPβ, as well as the C/EBPα and PPARγ genes, during the differentiation of preadipocytes into adipocytes. Moreover, BPE down-regulated adipocyte-specific genes such as aP2 and FAS compared with control adipocytes. The specific mechanism mediating the effects of BP revealed that insulin-stimulated phosphorylation of Akt was strongly decreased, and its downstream substrate, phospho-GSK3β, was downregulated by BPE treatment in 3T3-L1 cells. Together, these data indicated that BP exerted anti-adipogenic activity by inhibiting the expression of PPARγ and C/EBPβ and the Akt signaling pathway in 3T3-L1 adipocytes. Next, we investigated whether BP extracts attenuated HFD-induced obesity in rats. Oral administration of BPE reduced HFD-induced body weight gain significantly without affecting food intake. The epididymal or perirenal adipose tissue weights were lower in rats on an HFD plus BPE compared with the tissue weights of HFD-induced obese rats. Total cholesterol and triglyceride levels in the rats fed BPE were modestly reduced, and the HDL-cholesterol level was significantly increased in HFD plus BP-fed rats compared with those of HFD-fed rats. Taken together, these results demonstrated an inhibitory effect of BP on adipogenesis through the down-regulation of C/EBPβ, C/EBPα, and PPARγ and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells. Moreover, BPE reduced body weight gain and inhibited fat accumulation in an HFD-induced animal model of obesity.  相似文献   

14.
Accumulating evidence indicates that disruption of the gut microbiota by a high-fat diet (HFD) may play a pivotal role in the progression of metabolic disorders such as non-alcoholic fatty liver disease (NAFLD). In this study, the structural changes of gut microbiota were analyzed in an HFD-induced NAFLD rat model during treatment with an ancient Chinese herbal formula (CHF) used in clinical practice – Qushi Huayu Fang. CHF treatment significantly reduced body weight, alleviated hepatic steatosis, and decreased the content of triglycerides and free fatty acids in the livers of the rats. Gut microbiota of treated and control rats were profiled with polymerase chain reaction-denaturing gradient gel electrophoresis and bar-coded pyrosequencing of the V3 region of 16S rRNA genes. Both analyses indicated that the CHF-treated group harbored significantly different gut microbiota from that of model rats. Partial least squares discriminant analysis and taxonomy-based analysis were further employed to identify key phylotypes responding to HFD and CHF treatment. Most notably, the genera Escherichia/Shigella, containing opportunistic pathogens, were significantly enriched in HFD-fed rats compared to controls fed normal chow (P < 0.05) but they decreased to control levels after CHF treatment. Collinsella, a genus with short chain fatty acid producers, was significantly elevated in CHF-treated rats compared to HFD-fed rats (P < 0.05). The results revealed that the bacterial profiles of HFD-induced rats could be modulated by the CHF. Elucidation of these differences in microbiota composition provided a basis for further understanding the pharmacological mechanism of the CHF.  相似文献   

15.
Animal studies have demonstrated that the ratio of M1 (M1Φ) to M2 (M2Φ) macrophage-specific gene expression in adipose tissue (AT) may be altered by chronic exercise; however, whether macrophage polarization is induced under these conditions has not yet been reported. Therefore, this study aimed to investigate the effect of chronic exercise on M1Φ/M2Φ polarization in the AT of high-fat diet (HFD)-induced obese mice. Exercise-induced differences in M1Φ/M2Φ polarization were verified via an exercise intensity study (EIS) in which different levels of exercise intensity were evaluated. Obesity was induced in male C57BL/6 J mice by feeding them with an HFD for 6 weeks. The study consisted of four groups: control group (CON), HFD-fed group (HFD), HFD-fed with exercise group (HFD + EXE), dietary conversion from HFD to normal diet (ND) group (DC), and dietary conversion from HFD to ND group (DC + EXE). For EIS, the HFD + EXE group was divided into three subgroups: low- (LI), mid- (MI), and high- (HI) intensity exercise. The total intervention period was 8 weeks. M1Φ/M2Φ polarization was confirmed by flow cytometry. M2Φ polarization in the AT of obese mice was significantly higher in HFD + EXE mice than in HFD mice, despite the HFD intake. In the EIS, M2Φ polarization was most pronounced in HFD + EXE-HI mice than in HFD mice. It can be proposed that the enhanced insulin resistance and inflammation by obesity can be improved by the increase of M2Φ polarization which is achieved by relatively high-intensity exercise.  相似文献   

16.
We have previously reported anti-obesity effects of Lysimachia foenum-graecum in high-fat diet (HFD)-induced obesity model. Here we isolated a triterpene saponin foenumoside B as an active component of L. foenum-graecum. Foenumoside B blocked the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner with an IC50 of 0.2 μg/ml in adipogenesis assay and suppressed the induction of PPARγ, the master regulator of adipogenesis. Foenumoside B induced the activation of AMP-activated protein kinase (AMPK), and modulated the expression of genes involved in lipid metabolism towards lipid breakdown in differentiated adipocytes. In mouse model, oral administration of foenumoside B (10mg/kg/day for 6 weeks) reduced HFD-induced body weight gain significantly without affecting food intake. Treatment of foenumoside B suppressed lipid accumulation in white adipose tissues and the liver, and lowered blood levels of glucose, triglycerides, ALT, and AST in HFD-induced obese mice. Consistent with the in vitro results, foenumoside B activated AMPK signaling, suppressed the expression of lipogenic genes, and enhanced the expression of lipolytic genes in vivo. Foenumoside B also blocked HFD-induced proinflammatory cytokine production in adipose tissue, suggesting its protective role against insulin resistance. Taken together, these findings demonstrate that foenumoside B represents the anti-obesity effects of L. foenum-graecum, and suggest therapeutic potential of foenumoside B in obesity and obesity-related metabolic diseases.  相似文献   

17.
This article reports data on the preventive effect of (?)epigallocatechin gallate (EGCG) on lipid metabolism and lipoproteins in isoproterenol (ISO)‐induced myocardial infarction (MI) in Wistar rats. The rats were induced MI by ISO (100 mg/kg) at an interval of 24 h for 2 days. EGCG (30 mg/kg) was given to rats as pretreatment for 21 days orally using an intragastric tube. EGCG significantly reduced the increased serum levels of cholesterol, triglycerides, and free fatty acids in the heart and serum phospholipids (PLs) in ISO‐treated rats. It also significantly increased the reduced levels of heart PLs in ISO‐induced rats. EGCG reduced the levels of serum low‐density lipoprotein cholesterol and very low‐density lipoprotein cholesterol and increased serum high‐density lipoprotein (HDL)‐cholesterol in ISO‐treated rats. It also reduced the increased cholesterol/PL ratio and atherogenic index and significantly increased the reduced ratio of HDL‐cholesterol/total cholesterol. Also EGCG significantly increased the reduced activity of lecithin cholesterol acyl transferase in ISO‐treated rats. Thus, EGCG prevented the accumulation of lipids and altered the levels of lipoproteins in myocardial‐infarcted rats. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:387–393, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20302  相似文献   

18.
Nonalcoholic fatty liver disease (NAFLD) originates from the hepatopathy of fatty liver. Pirfenidone is a novel broad-spectrum anti-fibrosis agent used for treating various kinds of tissue fibrosis. The present study will evaluate the effects of Pirfenidone on liver injury in high-fat diet (HFD)-fed mice to evaluate the value of Pirfenidone in treating NAFLD. The pathology of NAFLD was simulated by feeding mice with an HFD in the present study, followed by treating the HFD mice with 150 and 300 mg/kg/day Pirfenidone once a day. The pathological state of HFD mice was identified by the elevated liver weight, promoted serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels, declined serum high-density lipoprotein cholesterol (HDL-C) levels, increased alanine aminotransferase and aspartate aminotransferase activity, and histopathological changes to the liver tissues, all of which were dramatically ameliorated by 150 and 300 mg/kg Pirfenidone administration. Furthermore, the excessive production of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6, as well as upregulated phosphorylated nuclear factor kappa-B (p- NF-κB p65), were observed in HFD-fed mice, but significantly reversed by Pirfenidone. Finally, activated oxidative stress, identified by promoted malondialdehyde (MDA) levels and declined catalase (CAT) activity, was observed in HFD-fed mice, accompanied by the downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and sterol-regulatory element-binding proteins-1c (SREBP-1c). After the treatment with Pirfenidone, oxidative stress was greatly mitigated. Our results imply that Pirfenidone ameliorated the progression of NAFLD by mediating inflammation and oxidative stress.  相似文献   

19.
Nobiletin, one of the polymethoxylated flavonoids isolated from citrus peels, is reported to possess various biological activities. The current study investigates the effect and possible mechanisms of nobiletin on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed rats. Male Sprague-Dawley rats were administrated with HFD and fructose (15%) in drinking water for 16 weeks to induce NAFLD. HFD-fed rats were treated with nobiletin (20 or 40 mg/kg/day) or vehicle for the last 4 weeks. Treatment of HFD-fed rats with nobiletin significantly reduced systolic blood pressure, adiposity, hyperlipidemia, insulin resistance, hepatic lipids content, NAFLD activity score and liver fibrosis. Nobiletin significantly increased plasma adiponectin levels, together with up-regulation of liver adiponectin receptor 1 (AdipoR1) expression. Additionally, decreased malondialdehyde levels and increased superoxide dismutase activity in plasma and hepatic tissue, consistent with down-regulation of liver NADPH oxidase subunit gp91phox expression, were also observed after nobiletin treatment. Furthermore, high dose of nobiletin exhibited higher therapeutic effect as a compared to low dose. These findings suggest that nobiletin alleviates HFD-induced NAFLD and metabolic dysfunction in rats. There might be an association between the observed inhibitory effect of nobiletin on NAFLD and modulation of AdipoR1 and gp91phox.  相似文献   

20.
Zinc oxide nanoparticles (ZnONPs) from plant origin were postulated to regulate complex hormonal control through the hypothalamus– pituitary–testicular axis and somatic cells due to their unique small size and effective drug delivery to target tissues. This study therefore investigates the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) from Moringa oleifera leaves on key endocrine hormones (LH, FSH and testosterone), MDA level, antioxidant enzymes (SOD and CAT), acetylcholineesterase (AChE) activity and reactive nitrogen species (NO?) level in rotenone induced male rat. The animals were divided into six groups (n = 8). Group I was orally given olive oil as vehicle; Group II received 60 mg/kg of rotenone (RTNE) only; Group III (RTNE + ZnONPs) received 60 mg/kg RTNE + 10 mg/kg ZnONPs; Group IV (RTNE + ZnCAP) received 60 mg/kg RTNE + 50 mg/kg zinc capsule; Group V (ZnONPs only) received 10 mg/kg ZnONPs only. Group VI received 50 mg/kg ZnCAP only. The experiment lasted 10 days. TEM and XRD images revealed ZnO NPs. Moreover, the presence of organic molecules in bio-reduction reactions from the FTIR spectrum showed the stabilization of the nanoparticles. Also, animals induced with rotenone exhibited impairment in the leydig cells by depleting LH, FSH, and testosterone levels with reduced AChE activity and significant (p < 0.05) alteration in cerebral enzymatic antioxidants. There was also brain increase in NO? production: marker of pro-inflammation. Nanotherapeutically, ZnONPs regulated hypothalamus–pituitary–testicular axis via modulation of cerebral NO?, FSH, LH, testosterone and AChE activity with induction of anti-oxidative enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号