首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
维生素C(vitaminC,Vc)是动植物体内含量较为丰富且发挥着重要功能的小分子物质。该文综述了近年来以模式植物拟南芥为实验材料研究Vc生物合成和代谢取得的进展,并对作物中类似的研究进行了概述。总结的信息对于在作物中进一步开展Vc合成与代谢研究并通过分子育种提高作物的抗逆性和营养价值具有参考意义。  相似文献   

2.
沙棘(Hippophse rhamnoides)以其果实中高含维生素C和E及多种氮基酸等营养成分而受到人们的重视。本实验对沙棘生长不同时期的各器官中Vc的含量进行了测定。其目的一是探讨生长期中各器官中Vc代谢动态;二是推断Vc合成的主要器官;三是确定Vc在各器官中的最高含量期,从而为沙棘的开发利用提供客观依据。  相似文献   

3.
维生素C(Vc)二步混菌发酵是我国首创具有自主知识产权的唯一应用于工业化生产Vc的微生物转化方法,该方法利用混合菌发酵L-山梨糖生产Vc前体物质-2-酮基-L-古龙酸,再经化学转化合成Vc;具有简化工艺,减少污染,降低能耗等优点。本文主要从产酸菌代谢关键酶、伴生菌胞外物质、组学以及外源添加物等方面综述Vc二步混菌发酵的最新研究进展,并提出进一步研究和探索的方向。  相似文献   

4.
混合菌发酵L-山梨糖生产Vc前体2-酮基-L-古龙酸研究进展   总被引:1,自引:0,他引:1  
利用混合菌发酵L-山梨糖生产2-酮基-L-古龙酸(2-KCA),再经化学转化合成维生素C(Vc),是我国工业生产Vc的主要途径,具有简化工艺,减少污染,降低能耗等诸多优点.从菌系组合、菌种选育、代谢途径与酶学特性、工程菌构建、伴生作用机制及发酵工艺等方面出发,综述混合菌发酵L-山梨糖生产Vc前体2-KGA的研究现状和最新进展,并提出进一步研究和探索的方向.  相似文献   

5.
维生素C(Vc)作为天然抗氧化剂,在植物生长发育过程中发挥重要作用,且与人工合成Vc相比,天然Vc更有利于人体健康。草莓富含Vc,提高草莓果实中Vc含量及培育高Vc品种已成为目前关注热点。本文围绕草莓果实Vc合成关键基因、QTL定位及其含量影响因素相关最新研究进展进行综述,为草莓果实Vc合成机制研究提供理论参考,并为今后通过栽培和育种提高草莓果实Vc含量提供重要依据。  相似文献   

6.
应用基因工程技术对植物细胞内的代谢途径进行遗传修饰,已成功地使细胞代谢发生改变或合成新的化合物。光合作用,淀粉合成,氮素同化和水分利用等是形成作物产量的基础代谢。对这些代谢途径中的关键步骤和靶分子进行基因修饰以提高作物产量的研究已取得长足的进展,并正在发展成为提高作物产量的新途径。本文着重论述应用代谢基因工程提高作物产量的技术策略,研究现状,存在的问题,所面临的挑战和应用前景。  相似文献   

7.
维生素C生物转化的代谢工程研究   总被引:3,自引:2,他引:1  
本从代谢工程角度出发,综述维生素C(Vc)生物转化代谢研究进展。分别论述了3条产生Vc重要前体2-酮基-L-古龙酸(2-KLG)反应路线的代谢机制、反应酶系及代谢工程菌构建等方面的问题;并对Vc生物转化应用前景作了展望。  相似文献   

8.
本文研究了饲料中维生素C(Vc)对中华鳖稚鳖冬眠前后Vc合成能力及肝脏中Vc含量的影响。将体重为29.41g±5.44g的稚鳖180只,按其饲料中Vc含量(0、500、2500mgVc/kg饲料)分为Vc0、Vc500和Vc2500共3组,每组6个平行,每平行10只鳖。实验开始前称重得各组初始平均体重。25℃±1℃下用实验饲料饲喂4周后,缓慢降温至7℃,人工诱导其进入冬眠,此时为冬眠期开始,每组取6只鳖,称重后快速处死,取其肝脏和肾脏。其余鳖全部称重。冬眠8周末取样,处理同上。用高效液相色谱(HPLC)法测定肝脏Vc含量和肝脏、肾脏古洛糖酸内酯氧化酶(GLO)活力。结果发现中华鳖自身能够合成Vc,且合成部位在肾脏。饲喂4周不同Vc水平的饲料后,各组间特定生长率差异不显著。冬眠8周后,各组体重均有所降低,组间冬眠期间特定生长率无显著性差异。冬眠开始时,稚鳖肝脏Vc蓄积量有随外源Vc浓度升高而递增的趋势,但差异未达到显著性水平;经历冬眠后各组稚鳖肝脏Vc含量降低,Vc500组下降不显著,而Vc0与Vc2500组显著下降;肾脏GLO活力在不同Vc梯度组间及冬眠前后均无显著差异。以上结果表明:中华鳖冬眠过程中要消耗较多的肝脏Vc,外源Vc和冬眠对肾脏Vc合成能力影响不显著。  相似文献   

9.
维生素C(抗坏血酸,AsA)是高等动物和少数生物必须的营养素,在动物和植物体内都有重要的生理功能。随着研究发现,AsA对抗氧化胁迫的病症具有良好的防护作用。这也正是人们关心和研究植物合成和积累AsA的主要原因。近年来,对其合成、代谢、功能、调控、利用等方面研究也日益广泛和深入。本研究就辣椒维生素C合成途径、代谢途径和相关酶的研究进行介绍,并进一步对其研究方向进行展望,从而较全面地概述维生素C生理代谢,有助于进一步了解维生素C的作用机理,为以后的研究提供参考。  相似文献   

10.
为开发一种适合龟裂链霉菌13C代谢通量分析的合成培养基,以龟裂链霉菌模式菌株M4018为研究对象,比较其在各种有机氮源和无机氮源的生长和土霉素合成特性。首次筛选到以硝酸钾为主要氮源的合成培养基,通过响应面分析法进一步优化,将土霉素合成能力由75.2 mg/L提高到145.6 mg/L。并应用到100%的1-13C葡萄糖标记实验,首次从同位素标记代谢流分析上证实了龟裂链霉菌中不存在2-酮-3-脱氧-6-磷酸葡糖酸裂解途径(Entner-Doudoroff pathway,ED),为龟裂链霉菌13C代谢通量分析提供了重要基础。  相似文献   

11.
Phospholipid biosynthesis is crucial for plant growth and development. It involves attachment of fatty acids to a phospho-diacylglycerol backbone and modification of the phospho-group into an amino alcohol. The biochemistry and molecular biology of the former has been well established, but a number of enzymes responsible for the latter have only recently been cloned and functionally characterized in Arabidopsis and some other model plant species. The metabolism involving the polar head groups of phospholipids established by past biochemical studies can now be validated by available gene knockout models. Moreover, gene knockout studies have revealed emerging functions of phospholipids in regulating plant growth and development. This review aims to revisit the old questions of polar headgroup biosynthesis of plant phosphatidylcholine and phosphatidylethanolamine by giving an overview of recent advances in the field and beyond.  相似文献   

12.
The small genome size and excellent genetics of Arabidopsis, as well as the ease with which it is transformed, make it a superb candidate for molecular genetic studies of the purine biosynthetic pathway. Herein we report the isolation, physical characterization, and dissection of the expression patterns of the single gene encoding 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole synthetase. This enzyme, encoded by the PUR7 gene, catalyzes aspartate addition at the alpha-amino group to the growing purine backbone. The expression of the PUR7 as directed by the 5' region, containing the promoter, mRNA leader, and leader intron, was examined in Arabidopsis using a transgenic reporter system. Our analysis demonstrates that the highest level of purine biosynthesis occurs in mitotically active tissues of the plant. Furthermore, purine biosynthesis appears to be under developmental and hormonal regulation. Inhibition of purine biosynthesis using substrate analogs results in arrested plant development and induction of purine gene expression. Purine nucleotides and their derivatives provide multiple cofactors for a variety of metabolic processes. Our findings begin to identify some of the regulatory mechanisms that affect the production of purine nucleotides in Arabidopsis and may give important insights into nitrogen metabolism in general.  相似文献   

13.
The plant cell cytosol is a dynamic and complex intracellular matrix that, by definition, contains no compartmentalization. Nonetheless, it maintains a wide variety of biochemical networks and often links metabolic pathways across multiple organelles. There have been numerous detailed proteomic studies of organelles in the model plant Arabidopsis thaliana, although no such analysis has been undertaken on the cytosol. The cytosolic protein fraction from cell suspensions of Arabidopsis thaliana was isolated and analyzed using offline strong cation exchange liquid chromatography and LC-MS/MS. This generated a robust set of 1071 cytosolic proteins. Functional annotation of this set revealed major activities in protein synthesis and degradation, RNA metabolism and basic sugar metabolism. This included an array of important cytosol-related functions, specifically the ribosome, the set of tRNA catabolic enzymes, the ubiquitin-proteasome pathway, glycolysis and associated sugar metabolism pathways, phenylpropanoid biosynthesis, vitamin metabolism, nucleotide metabolism, an array of signaling and stress-responsive molecules, and NDP-sugar biosynthesis. This set of cytosolic proteins provides for the first time an extensive analysis of enzymes responsible for the myriad of reactions in the Arabidopsis cytosol and defines an experimental set of plant protein sequences that are not targeted to subcellular locations following translation and folding in the cytosol.  相似文献   

14.
Regulation of plant glucosinolate metabolism   总被引:11,自引:0,他引:11  
Yan X  Chen S 《Planta》2007,226(6):1343-1352
Glucosinolates and their degradation products are known to play important roles in plant interaction with herbivores and micro-organisms. In addition, they are important for human life. For example, some degradation products are flavor compounds and some exhibit anticarcinogenic properties. Recent years have seen great progress made in the understanding of glucosinolate biosynthesis in Arabidopsis thaliana. The core glucosinolate biosynthetic pathway has been revealed using biochemical and reverse genetics approaches. Future research needs to focus on questions related to regulation and control of glucosinolate metabolism. Here we review current status of studies on the regulation of glucosinolate metabolism at different levels, and highlight future research towards elucidating the signaling and metabolic network that control glucosinolate metabolism.  相似文献   

15.
16.
Light signaling plays a pivotal role in controlling plant morphogenesis, metabolism, growth and development. The central process of light signaling pathway is to build the link between light signals and the expression of genes involved. Although studies focused on light signaling toward metabolism have been documented well in the past several decades, most regulation networks of light signaling in a specific metabolic production largely remained unknown. Anthocyanin accumulation in plant tissues depends on the availability of light signals, but only little is known about the potential regulation network underlying light signal controls anthocyanin biosynthesis. Here, we briefly review the recent progress on the light-triggered anthocyanin biosynthesis via ANGUSTIFOLIA3 (AN3) and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) network in Arabidopsis.  相似文献   

17.
For the past decade, Arabidopsis has been the model higher plant of choice. Research into leaf starch metabolism has demonstrated that Arabidopsis is a useful system in which to make fundamental discoveries about both starch biosynthesis and starch degradation. This review describes recent discoveries in these fields and illustrates how such discoveries might be applied in the green biotechnology sector to improve and diversify our starch crops.  相似文献   

18.
Terpenoid metabolism in wild-type and transgenic Arabidopsis plants   总被引:13,自引:0,他引:13       下载免费PDF全文
Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants.  相似文献   

19.
The use of genetics to dissect plant secondary pathways   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号