首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or β-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked β-type effect on different sodium channel subtypes (hNav1.1–hNav1.7) at low concentrations, and has more pronounced activity on hNav1.1, hNav1.2 and hNav1.4. By comparing To4 primary structure with other Tityus β-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms.  相似文献   

2.

Background

The venoms of several scorpion species have long been associated with pancreatitis in animal models and humans. Antarease, a Zn-metalloprotease from Tityus serrulatus, is able to penetrate intact pancreatic tissue and disrupts the normal vesicular traffic necessary for secretion, so it could play a relevant role in the onset of acute pancreatitis.

Methods

The cDNA libraries from five different scorpion species were screened for antarease homologs with specific primers. The amplified PCR products were cloned and sequenced. A structural model was constructed to assess the functionality of the putative metalloproteases. A phylogenetic analysis was performed to identify clustering patterns of these venom components.

Results

Antarease-like sequences were amplified from all the screened cDNA libraries. The complete sequence of the antarease from T. serrulatus was obtained. The structural model of the putative antarease from Tityus trivittatus shows that it may adopt a catalytically active conformation, sharing relevant structural elements with previously reported metalloproteases of the ADAM family. The phylogenetic analysis reveals that the reported sequences cluster in groups that correlate with the geographical localization of the respective species.

Conclusions

Antareases are ubiquitous to a broad range of scorpion species, where they could be catalytically active enzymes. These molecules can be used to describe the evolution of scorpion venoms under different ecogeographic constrains.

General significance

For the first time the complete sequence of the antareases is reported. It is demonstrated that antareases are common in the venom of different scorpion species. They are now proposed as targets for antivenom therapies.  相似文献   

3.
To1, previously named Tc49b, is a peptide neurotoxin isolated from venom of the scorpion Tityus obscurus that is responsible for lethal human poisoning cases in the Brazilian Amazonian region. Previously, To1 was shown to be lethal to mice and to change Na+ permeation in cerebellum granular neurons from rat brain. In addition, To1 did not affect Shaker B K+ channels. Based on sequence similarities, To1 was described as a β-toxin. In the present work, To1 was purified from T. obscurus venom and submitted to an electrophysiological characterization in human and invertebrate NaV channels. The analysis of the electrophysiological experiments reveal that To1 enhances the open probability at more negative potentials of human NaV 1.3 and 1.6, of the insect channel BgNaV1 and of arachnid VdNaV1 channel. In addition, To1 reduces the peak of Na+ currents in some of the NaVs tested. These results support the classification of the To1 as a β-toxin. A structure and functional comparison to other β-toxins that share sequence similarity to To1 is also presented.  相似文献   

4.
We identified Tf2, the first β-scorpion toxin from the venom of the Brazilian scorpion Tityus fasciolatus. Tf2 is identical to Tb2-II found in Tityus bahiensis. We found that Tf2 selectively activates human (h)Nav1.3, a neuronal voltage-gated sodium (Nav) subtype implicated in epilepsy and nociception. Tf2 shifts hNav1.3 activation voltage to more negative values, thereby opening the channel at resting membrane potentials. Seven other tested mammalian Nav channels (Nav1.1-1.2; Nav1.4-1.8) expressed in Xenopus oocytes are insensitive upon application of 1 μM Tf2. Therefore, the identification of Tf2 represents a unique addition to the repertoire of animal toxins that can be used to investigate Nav channel function.  相似文献   

5.
A fossil scorpion, Tityus geratus (Scorpioncs: Buthidae) n. sp., is described from Dominican amber. This is the third described amber Tityus sp. and the third Dominican amber scorpion. On the basis of the amber finds and available knowledge on the present distribution of Tityus spp. in the Antilles, the vicariance model of Caribbean biogeography can be evoked to best explain the present distribution of this genus.  相似文献   

6.
We present evidence that venom from the Brazilian scorpion Tityus serrulatus and a purified fraction selectively cleave essential SNARE proteins within exocrine pancreatic tissue. Western blotting for vesicle-associated membrane protein type v-SNARE proteins (or synaptobrevins) reveals characteristic alterations to venom-treated excised pancreatic lobules in vitro. Immunocytochemistry by electron microscopy confirms both the SNARE identity as VAMP2 and the proteolysis of VAMP2 as a marked decrease in secondary antibody-conjugated colloidal gold particles that are predominantly associated with mature zymogen granules. Studies with recombinant SNARE proteins were used to determine the specific cleavage site in VAMP2 and the susceptibility of VAMP8 (endobrevin). The VAMP2 cleavage site is between the transmembrane anchor and the SNARE motif that assembles into the ternary SNARE complex. Inclusion of divalent chelating agents (EDTA) with fraction ν, an otherwise active purified component from venom, eliminates SNARE proteolysis, suggesting the active protein is a metalloprotease. The unique cleavages of VAMP2 and VAMP8 may be linked to pancreatitis that develops following scorpion envenomation as both of these v-SNARE proteins are associated with zymogen granule membranes in pancreatic acinar cells. We have isolated antarease, a metalloprotease from fraction ν that cleaves VAMP2, and report its amino acid sequence.  相似文献   

7.
The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg1]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg1]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg1]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg1]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg1]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys.  相似文献   

8.
Most functions attributed to Tityus serrulatus venom (TsV) are related to active molecules on ion-channels; however, here we describe a new pentapeptide that was discovered through enzymatic assay selection using EP24.15. The primary structure analysis revealed the sequence KEXXG (X means Ile or Leu), similar to the sequence present in the β-KTX propeptide described from the venom of Tityus spp. We confirmed through HPLC analysis that KEILG is the peptide present in TsV, but that KELLG also inhibits EP24.15 although through different mechanisms.  相似文献   

9.
The Colombian scorpion Tityus pachyurus is toxic to humans and is capable of producing fatal accidents, but nothing is known about its venom components. This communication reports the separation of at least 57 fractions from the venom by high performance liquid chromatography. From these, at least 104 distinct molecular weight compounds were identified by mass spectrometry analysis. The complete amino acid sequences of three peptides were determined and the partial sequences of three others were also identified. Electrophysiological experiments conducted with ion-channels expressed heterologously on Sf9 cells showed the presence of a potent Shaker B K(+)-channel blocker. This peptide (trivial name Tpa1) contains 23 amino acid residues closely packed by three disulfide bridges with a molecular mass of 2,457 atomic mass units. It is the third member of the sub-family 13, for which the systematic name is proposed to be alpha-KTx13.3. The mice assay showed clearly the presence of toxic peptides to mammals. One of them named Tpa2, containing 65 amino acid residues with molecular mass of 7,522.5 atomic mass units, is stabilized by four disulfide bridges. It was shown to modify the Na(+)-currents of F-11 and TE671 cells in culture, similar to the beta scorpion toxins. These results demonstrate the presence of toxic peptides in the venom of T. pachyurus and confirm that accidents with this species of scorpion should be considered an important human hazard in Colombia.  相似文献   

10.

Background

Scorpion venom induces systemic inflammation characterized by an increase in cytokine release and chemokine production. There have been few experimental studies assessing the effects of scorpion venom on adipose tissue function in vivo.

Methodology/Principal Findings

To study the adipose tissue inflammation (ATI) induced by Androctonus australis hector (Aah) venom and to assess possible mechanisms of ATI, mice (n = 6, aged 1 month) were injected with Aah (0.45 mg/kg), toxic fraction of Aah (FTox-G50; 0.2 mg/kg) or saline solution (control). Inflammatory responses were evaluated by ELISA and cell sorting analyses in adipose tissue 45 minutes and 24 hours after injection. Quantitative real-time PCR was used to assess the regulation of genes implicated in glucose uptake. The titers of selected inflammatory cytokines (IL-1β, IL-6 and TNF-α) were also determined in sera and in insulin target tissues. The serum concentration of IL-1β rose 45 minutes after envenomation and returned to basal level after 24 hours. The pathophysiological effects of the venom after 24 hours mainly involved M1-proinflammatory macrophage infiltration in adipose tissue combined with high titers of IL-1β, IL-6 and TNF-α. Indeed, TNF-α was strongly induced in both adipose tissue and skeletal muscle. We studied the effects of Aah venom on genes implicated in insulin-stimulated glucose uptake. Insulin induced a significant increase in the expression of the mRNAs for hexokinase 2 and phosphatidylinositol 3-kinase in both skeletal muscle and adipose tissue in control mice; this upregulation was completely abolished after 24 hours in mice envenomed with Aah or FTox-G50.

Conclusions/Significance

Our findings suggest that Aah venom induces insulin resistance by mechanisms involving TNF-α-dependent Map4k4 kinase activation in the adipose tissue.  相似文献   

11.
The sequence of the 61 amino acids of toxin VII, a β-toxin from the venom of the South American scorpion Tityus serrulatus, has been determined by automatic sequencing of the reduced and S-[14C] car?ymethylated protein and of tryptic peptides obtained before or after citraconylation of this protein. This toxin, the most active β-toxin from this venom, is the first Tityus toxin to be fully sequenced. The results clearly show that toxin VII belongs to the structural group of scorpion toxins originating from Central and North America.  相似文献   

12.
A new species of scorpion is described based on a rare entire adult male preserved in a cloudy amber from Miocene rocks in the Chiapas Highlands, south of Mexico. The amber-bearing beds in Chiapas constitute a Conservation Lagerstätte with outstanding organic preservation inside plant resin. The new species is diagnosed as having putative characters that largely correspond with the genus Tityus Koch, 1836 (Scorpiones, Buthidae). Accordingly, it is now referred to as Tityus apozonalli sp. nov. Its previously unclear phylogenetic relationship among fossil taxa of the family Buthidae from both Dominican and Mexican amber is also examined herein. Preliminarily results indicate a basal condition of T. apozonalli regarding to Tityus geratus Santiago-Blay and Poinar, 1988, Tityus (Brazilotityus) hartkorni Lourenço, 2009, and Tityus azari Lourenço, 2013 from Dominican amber, as was Tityus (Brazilotityus) knodeli Lourenço, 2014 from Mexican amber. Its close relationships with extant Neotropic Tityus-like subclades such as ‘Tityus clathratus’ and the subgenus Tityus (Archaeotityus) are also discussed. This new taxon adds to the knowledge of New World scorpions from the Miocene that are rarely found trapped in amber.  相似文献   

13.

Background

Glutathione S-transferases (GSTs) metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2−/− mice escape liver injury.

Methodology/Principal Findings

To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2−/− strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2−/− mice, when hGSTP1+mGstp1/2−/− mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.

Conclusions

By recapitulating human π-class GST expression, hGSTP1+mGstp1/2−/− mice may better model human drug and xenobiotic toxicology.  相似文献   

14.
The water-soluble part of the dried venom from the scorpion, Tityus serrulatus Lutz and Mello (range, Southeastern Brazil), showed 16 polypeptide bands on polyacrylamide gel electrophoresis. This material exhibited toxic and hyaluronidase activity but no phospholipase, phosphodiesterase, protease, or fibrinolytic activity. Fractionation on glycinamide-treated Sephadex G-50 afforded three protein fractions, which were non-toxic, equitoxic, and three times more toxic than the water-soluble venom. Subsequent separation of the toxic fractions on carboxymethyl-cellulose with phosphate buffers furnished five toxic components, which were further purified on carboxymethyl-cellulose with a salt gradient in acetate buffer. Toxin γ, the major and most basic toxin, is a 62-residue protein that, unlike other scorpion toxins, contains methionine. Automated Edman degradation showed the amino-terminal sequence to be H-Lys-Glu-Gly-Tyr-Leu-Met-Asp-His-Glu-Gly-Cys-Lys-Leu-Ser-Cys-Phe-Ile-Arg-Pro-Ser-Gly-Tyr-Cys-Gly-Arg-Glu-Cys-Gly-Ile-. Toxin γ is the first example of a fifth structural type of mammalian toxin from scorpion venom. Its amino-terminal sequence shows greater homology with toxins similar to Centruroides suffusus suffusus toxin III and Androctonus australis toxin II than with toxins similar to A. australis toxin I or Bhutus occitanus tunetanus toxin I.  相似文献   

15.
Zhu S  Gao B 《FEBS letters》2006,580(30):6825-6836
Venoms from scorpions contain extremely rich bioactive peptides that often carry diverse functions and are presumably needed to achieve synergistic effects for rapidly immobilizing prey and defending themselves. BotLVP1 is a unique heterodimer protein recently found in the scorpion Buthus occitanus tunetanus venom that is structurally related to scorpion toxins affecting sodium channels (NaScTxs) but exhibits adipocyte lipolysis activity. We have isolated and identified two cDNA clones encoding subunits and β of a BotLVP1-like peptide (named BmLVP1) from the Chinese scorpion Buthus martensii venom gland and determined the first complete gene structure of this subfamily. These results highlight a genetic link between these lipolysis activating peptides and NaScTxs. Comparison of cDNA and genomic sequences combined with protein structural and functional analysis provides evidence supporting the existence of RNA editing mechanism in scorpion venom glands, which could mediate functional switch of BmLVP1 gene, from adipocyte lipolysis to neurotoxicity, by altering the wrapper disulfide bridge (WDB) pattern of the peptides.  相似文献   

16.
The venom from the Brazilian scorpion Tityus stigmurus was fractionated by high performance liquid chromatography (HPLC) and the corresponding components were used for molecular mass determination using electrospray ion trap mass spectrometry. One hundred distinct components were clearly assigned showing molecular masses from 216.5 to 44,800.0 Da. Fifteen new components were isolated and sequenced, four of them to completion: Tst-3 (similar to Na(+) channel specific scorpion toxins), Tst-17 (a K(+) channel blocking peptide similar to Tc1), Tst beta KTx (a peptide with identical sequence as that of TsTX-K beta toxin earlier described to exist in T. serrulatus venom) and finally a novel proline-rich peptide of unknown function. Among the eleven components partially sequenced were two enzymes: hyaluronidase and lysozyme. The first enzyme has a molecular mass of 44,800.0 Da. This enzyme showed high activity against the substrate hyaluronan in vitro. Amino acid sequence of the second enzyme showed that it is similar to other known lysozymes, with similar molecular mass and sequence to that of bona fide lysozymes reported in public protein data banks. Finally, this communication reports a correlation among HPLC retention times and molecular masses of folded scorpion toxins as well as a comparative structural and physiological analysis of components from the venom of several species of the genus Tityus.  相似文献   

17.

Background

Recently, a new subfamily of long-chain toxins with a Kunitz-type fold was found in scorpion venom glands. Functionally, these toxins inhibit protease activity and block potassium channels. However, the genomic organization and three-dimensional (3-D) structure of this kind of scorpion toxin has not been reported.

Principal Findings

Here, we characterized the genomic organization and 3-D nuclear magnetic resonance structure of the scorpion Kunitz-type toxin, LmKTT-1a, which has a unique cysteine pattern. The LmKTT-1a gene contained three exons, which were interrupted by two introns located in the mature peptide region. Despite little similarity to other Kunitz-type toxins and a unique pattern of disulfide bridges, LmKTT-1a possessed a conserved Kunitz-type structural fold with one α-helix and two β-sheets. Comparison of the genomic organization, 3-D structure, and functional data of known toxins from the α-KTx, β-KTx, γ-KTx, and κ-KTx subfamily suggested that scorpion Kunitz-type potassium channel toxins might have evolved from a new ancestor that is completely different from the common ancestor of scorpion toxins with a CSα/β fold. Thus, these analyses provide evidence of a new scorpion potassium channel toxin subfamily, which we have named δ-KTx.

Conclusions/Significance

Our results highlight the genomic, structural, and evolutionary diversity of scorpion potassium channel toxins. These findings may accelerate the design and development of diagnostic and therapeutic peptide agents for human potassium channelopathies.  相似文献   

18.
Zhao R  Dai H  Qiu S  Li T  He Y  Ma Y  Chen Z  Wu Y  Li W  Cao Z 《PloS one》2011,6(11):e27548

Background

Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized.

Principal Findings

A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (Ki = 1.6×10−7 M) and thermostability.

Conclusions

The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived from scorpion venom, and it represents a new class of Kunitz-type venom peptides.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号