首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
In studies conducted in Hawaii under both greenhouse and field conditions, we evaluated the propensity of melon fly females, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), to alight on either fruit mimics (agar spheres) or host fruit that were or were not occupied by conspecific resident females. We also examined the extent to which occurrence of local enhancement of alighting found in B. cucurbitae females was affected by a variety of factors such as the presence or the absence of host fruit odor (zucchini or ivy gourd), the number of conspecifics present on a host, the degree of isolation of assayed females from other females prior to testing, and the kinds of stimuli (acoustical, visual, olfactory) emanating from conspecifics present on a host mimic. In addition, we asked whether local enhancement might be operative in the food-foraging behavior of melon flies. We found that in a variety of situations, melon fly females alighted in significantly greater numbers at resources (food, fruit mimics, or host fruit) occupied by conspecific females than at unoccupied resources. Such positive influence of resident conspecific females was more pronounced in greenhouse cage assays when one or two rather than four residents were present on a host mimic (but was more pronounced when four rather than one or two residents were present on a host fruit in a field test), and was more evident when test females were grouped with conspecific females than when test females were isolated from conspecific females for 5 days before testing. Rather than acoustical or olfactory stimuli associated with resident conspecific females, the mere physical presence (visual stimulus) of a motionless dead resident melon fly female provided sufficient stimulation for test females to alight in significantly greater numbers at resources occupied by conspecific females than at unoccupied resources. We consider our findings as good evidence of local enhancement in the melon fly and discuss our results in relation to monitoring tactics for adult melon flies.  相似文献   

2.
Trapping trials were conducted in two locations on the island of Hawaii with plastic‐matrix formulations of methyl eugenol (ME) (1‐2‐dimethoxy‐4‐allylbenzene) and cuelure (CL) [4‐(p‐acetoxyphenyl)‐2‐butanone] in traps with or without a toxicant (2, 2‐dichlorovinyl dimethyl phosphate, DDVP) against wild fly populations of oriental fruit fly, Bactrocera dorsalis (Hendel) and melon fly, Bactrocera cucurbitae (Coquillett) respectively. Both 5 g disks and 10 g cones of ME and 2 g plugs of CL caught flies for >9 months which varied relative to the population fluctuations. In all of these trials a one‐way entrance design trap caught more flies than the toxicant‐baited trap. The similar‐sized entrance holes (0.70 cm) of the latter may have slowed the dispersal of the toxicant vapour, thus causing flies to be repelled or killed outside the entrance to the trap when DDVP vapour was evolving at a maximum rate. The effect decreased as the toxicant aged. One‐way entrance traps are appropriate where toxicant traps are not allowed (e.g. organic farms), present a health hazard (e.g. yards with children), or would need to be replaced more frequently than lures. The results of these studies are discussed in relation to areawide fruit fly suppression programs where large populations of these flies are persistent, as well as to detection programs in areas where fruit flies have not established.  相似文献   

3.
We assessed the role of visual and olfactory cues on oviposition preference in the oligophagous tomato fruit fly, Neoceratitis cyanescens (Bezzi) (Diptera: Tephritidae). In a field survey, we evaluated the stage of susceptibility of field‐grown tomatoes by monitoring N. cyanescens infestations from fruit‐setting up to harvest, in relation to post‐flowering time, size, and visual properties of fruit. In two‐choice laboratory experiments, we tested the degree to which females use visual and olfactory cues to select their host plant for oviposition. In addition, we investigated the ability of flies to avoid fruit already infested by conspecific eggs or larvae, and the influence of natal host fruit on oviposition preference. Neoceratitis cyanescens females preferentially lay their eggs in small yellow‐green unripe fruit (2–3.5 cm diameter, 10–21 days post‐flowering). Damage to fruit was significantly affected by brightness and size properties. In laboratory experiments, females chose to lay their eggs in bright orange rather than yellow domes. On the sole basis of olfactory stimuli, females showed a significant preference for unripe vs. ripe host fruit, for unripe fruit vs. flowers or leaves, and for host vs. non‐host fruit (or control). However, colour interacted with odour as females dispatched their eggs equally between the yellow dome and the bright orange dome when unripe fruit of tomato was placed under the yellow dome vs. ripe fruit under the bright orange dome. When offered real ripe and unripe tomatoes, females preferred unripe tomatoes. Females significantly chose to lay eggs in non‐infested fruit when they were given the choice between these or fruit infested with larvae. In contrast, recent stings containing eggs did not deter females from laying eggs. Rather, they could have an attractive effect when deposited within <1 h. Regardless of their natal host plant, tomato or bugweed, N. cyanescens females laid significantly more eggs in a dome containing bugweed fruit. However, 15% of females originating from tomato laid eggs exclusively in the dome with tomato, against 3% of females originating from bugweed.  相似文献   

4.
Ivy gourd, Coccinia grandis (L.) Voigt, patches throughout Kailua-Kona, Hawaii Island, HI, were identified as persistent sources of melon fly, Bactrocera cucurbitae (Coquillett). These patches had a low incidence of Psyttalia fletcheri (Silvestri), its major braconid parasitoid natural enemy in Hawaii, and were used to evaluate augmentative releases of P. fletcheri against melon fly. In field cage studies of releases, numbers of melon flies emerging from ivy gourd fruit placed inside treatment cages were reduced up to 21-fold, and numbers of parasitoids were increased 11-fold. In open field releases of P. fletcheri into ivy gourd patches, parasitization rates were increased 4.7 times in release plots compared with those in control plots. However, there was no significant reduction in emergence of melon flies from fruit. In subsequent cage tests with sterile melon flies and P. fletcheri, combinations of sterile flies and P. fletcheri produced the greatest reduction (9-fold) in melon fly emergence from zucchini, Cucurbita pepo L. Reductions obtained with sterile flies alone or in combination with parasitoids were significantly greater than those in the control, whereas those for parasitoids alone were not. Although these results suggest that the effects of sterile flies were greater than those for parasitoids, from a multitactic melon fly management strategy, sterile flies would complement the effects of P. fletcheri. Cost and sustainability of these nonchemical approaches will be examined further in an ongoing areawide pest management program for melon fly in Hawaii.  相似文献   

5.
No-choice tests were conducted to determine whether fruit of southern highbush blueberry, Vaccinium corymbosum L., hybrids are hosts for three invasive tephritid fruit flies in Hawaii. Fruit of various blueberry cultivars was exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Each of the 15 blueberry cultivars tested were infested by oriental fruit fly and Mediterranean fruit fly, confirming that these fruit flies will oviposit on blueberry fruit and that blueberry is a suitable host for fly development. However, there was significant cultivar variation in susceptibility to fruit fly infestation. For oriental fruit fly, 'Sapphire' fruit produced an average of 1.42 puparia per g, twice as high as that of the next most susceptible cultivar 'Emerald' (0.70 puparia per g). 'Legacy', 'Biloxi', and 'Spring High' were least susceptible to infestation, producing only 0.20-0.25 oriental fruit fly puparia per g of fruit. For Mediterranean fruit fly, 'Blue Crisp' produced 0.50 puparia per g of fruit, whereas 'Sharpblue' produced only 0.03 puparia per g of fruit. Blueberry was a marginal host for melon fly. This information will aid in development of pest management recommendations for blueberry cultivars as planting of low-chill cultivars expands to areas with subtropical and tropical fruit flies. Planting of fruit fly resistant cultivars may result in lower infestation levels and less crop loss.  相似文献   

6.
To determine how mature females of the tomato fruit fly, Neoceratitis cyanescens (Bezzi) (Diptera: Tephritidae), detect host fruit after arriving in their host plant habitat, behavioral responses to colored models were observed in a laboratory flight chamber. Host‐seeking females oriented themselves preferentially towards bright orange spheres (3.7 cm in diameter), irrespective of their natal host fruit: tomato, bug weed, or black nightshade. Females oriented themselves preferentially towards the orange sphere when placed against a fluorescent yellow background as opposed to a black background, but the distribution of responses to the set of colored spheres did not vary significantly with background color. In a choice situation between bright orange spheres of various sizes (1.9, 3.7, and 7.5 cm in diameter), females landed preferentially on the bigger sphere. However, they preferred a yellow color when the latter was associated with two‐dimensional models, probably mimicking leaves. The attractiveness of orange spheres depended more on the proportion of reflected light in the spectral region around 610 nm than brightness of color in itself. Low light intensity significantly influenced the activity of the flies but not their visual preference. The strong response of females to bright orange spheres confirmed the importance of visual characteristics in short‐range mechanisms of host‐plant location in specialist insects. Responses to fruit visual stimuli are discussed relative to other Tephritidae, host‐finding strategy, and pest management.  相似文献   

7.
Mature females of the tomato fruit fly Neoceratitis cyanescens can detect host fruit at a short distance using only visual stimuli, but little is known about the role of airborne volatile cues in the host searching strategy. A series of experiments is conducted in a laboratory wind tunnel, in which the behavioural responses of individual flies to volatiles from Solanaceae host plants (including tomato Lycopersicum esculentum Mill., bug weed Solanum mauritianum Scop. and Turkey berry Solanum torvum Sw.) are observed, according to some environmental (air speed) and physiological (age and mating status of females, time of day) factors. Mature females respond primarily to specific olfactory cues from blends of flowers or host fruit, preferentially unripe fruit for bug weed, as opposed to ripe fruit for Turkey berry or tomato. Males are also highly attracted by the odour of unripe fruit of bug weed. Wind plays a key role, as shown by the proportion of flies that reach the upwind section of the tunnel in the presence of both fruit odour and air flow (66.7%) and in the absence of either fruit odour (13.3%) or wind (36.7%). In response to fruit volatiles carried by wind, flies embark in a ‘plume tracking’ or ‘aim and shoot' flight, consistent with odour‐conditioned anemotaxis. Females respond to host fruit odour regardless of their age, egg load or mating status, and also more consistently in the afternoon, which is their preferential time of day for egg‐laying. Searching behaviour and response to host volatiles in N. cyanescens are discussed in the light of host‐finding and an adaptive strategy.  相似文献   

8.
In tests on feral populations of polyphagous Bactrocera tryoni (Froggatt) adults on host guava trees, both sexes were significantly more attracted to Tangletrap‐coated 50 mm diameter spheres colored blue or white than to similar spheres colored red, orange, yellow, green, or black or to Tangletrap‐coated 50 mm diameter yellow‐green guava fruit. In contrast, in tests on feral populations of oligophagous Bactrocera cacuminata (Hering) on host wild tobacco plants, both sexes were significantly more attracted to Tangletrap‐coated 15 mm diameter spheres colored orange or yellow than to other colors of spheres or to Tangletrap‐coated 15 mm diameter green wild tobacco fruit. Both sexes of both tephritid species were significantly more attracted to blue (in the case of B. tryoni) or orange (in the case of B. cacuminata) 50 mm spheres displayed singly than to blue or orange 15 mm spheres displayed in clusters, even though fruit of wild tobacco plants are borne in clusters. Finally, B. tryoni adults were significantly less attracted to non‐ultraviolet reflecting bluish fruit‐mimicking spheres than to bluish fruit‐mimicking spheres having a slightly enhanced level of ultraviolet reflectance, similar to the reflectance of possible native host fruit of B. tryoni, whose bluish skin color is overlayed with ultraviolet‐reflecting waxy bloom. Responses to fruit visual stimuli found here are discussed relative to responses found in other tephritid species.  相似文献   

9.
We report the results of a study on potential food sources of the widely distributed Indo‐Australian braconid fruit fly parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae). Adults sustained life on diets of fruit juice or fruit pulp, a homopteran and its associated honeydew, or extrafloral nectary secretions. Longevities on all these foods and fecundity on fruit juice were comparable to those achieved on the honey that is typically provided in mass‐rearing programs. Certain of the flower species Bidens alba (L.), Spermacoce verticillata L., Lobularia maritima (L.) Desv., Brassica nigra (L.), Lantana camara L., their nectar or pollen, provided a diet that resulted in longer maximum life spans than water alone. Unlike some tephritid flies, the braconid did not feed on fresh bird feces or leaf‐surface exudates. Feeding by D. longicaudata on wounded host fruits of tephritid flies suggests that adult parasitoids would not need separate forays for adult food and oviposition sites, as these occur in the same locations. We conclude that an inventory of adult foods may help target inundative releases of D. longicaudata and lead to improvements in diets used for mass rearing.  相似文献   

10.
The host suitability of the oriental fruit fly, Bactrocera dorsalis (Hendel), for development of Biosteres arisanus (Sonan), a braconid parasitoid, was compared with three other fruit fly species, namely, Mediterranean fruit fly, Ceratitis capitata Weidemann, melon fly, Bactrocera cucurbitae Coquilett, and Malaysian fruit fly, Bactrocera latifrons (Hendel). In addition, effects of five different fruit species, namely, Carica papaya L. (solo papaya), Musa sapientum (L.) O. Ktze. (apple banana), Mangifera indica (L.) (Haden mango), Terminalia catappa (L.) (false kamani), and Citrus aurantiifolia (Christman) Swingle (common lime), on the parasitization rate of B. dorsalis and sex ratio of parasitoid progenies were evaluated. Effects of host egg to female B. arisanus ratios on parasitoid progeny yields were likewise determined. The host suitability of fruit flies for development of B. arisanus was ranked as: B. dorsalis>C. capitata=B. latifrons=B. cucurbitae. Based on percent parasitization of B. dorsalis, preference of B. arisanus females for host eggs varied with fruit species, however, preferential oviposition displayed by female parasitoids did not influence sex ratios of subsequent parasitoid progenies. Increases in host egg to female parasitoid ratios of 5:1, 10:1, 20:1, 25:1, and 30:1 corresponded with increases in parasitoid progeny yield reaching a plateau at 20:1.  相似文献   

11.
  • 1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts.
  • 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively.
  • 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato.
  • 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae.
  • 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present.
  • 6 We conclude that herbivore‐induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly‐identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.
  相似文献   

12.
In previous flight‐tunnel tests Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) flies originating from domestic apple (Malus pumila), hawthorn (Crataegus spp.), and flowering dogwood (Cornus florida), displayed greater numbers of upwind flights to blends of volatiles identified from their natal fruit compared to non‐natal fruit. Here, we show that when certain non‐host volatiles were added to the host blend, significantly fewer apple, hawthorn, and dogwood flies exhibited sustained upwind flight to the source. Specifically, the upwind flight of apple flies to the apple blend was significantly antagonized by the addition of the hawthorn or dogwood blends, the addition of 3‐methylbutan‐1‐ol alone (a key volatile for hawthorn and dogwood flies), or the combination of 3‐methylbutan‐1‐ol and another key dogwood volatile, 1‐octen‐3‐ol. Similarly, the upwind flight of dogwood and hawthorn flies to their respective natal blends was antagonized by the addition of the apple blend or the key apple volatile butyl hexanoate. Experiments were also conducted to determine whether non‐natal fruit volatiles could disrupt the close‐range flight response of flies to the visual stimulus of fruit alone, represented by an odorless red sphere. Tests with apple‐origin flies showed that when the hawthorn blend, the dogwood blend, or the key antagonist volatiles from each (3‐methylbutan‐1‐ol and 1‐octen‐3‐ol) were added to a red sphere fruit mimic, significantly lower proportions of flies were captured, compared with captures when no odor was present. Our results support the hypothesis that agonist and antagonist properties of fruit volatiles can play an important role in host recognition/discrimination by Rhagoletis flies.  相似文献   

13.
The effects of food deprivation, age, and mating status on the responses of three fruit fly species, Ceratitis cosyra (Walker), Ceratitits fasciventris (Bezzi), and Ceratitits capitata (Wiedemann) (Diptera: Tephritidae) to natural and artificial sugar and protein food sources were investigated. Natural food sources included guava [Psidium guajava L. (Myrtaceae)] juice (a common host fruit for all three fruit fly species) and bird faeces (farm chicken). Artificial food sources included molasses (obtained from a local sugar factory) and a locally produced protein bait (the International Centre of Insect Physiology and Ecology yeast). In all species studied, sugar deprivation of immature (1–2‐day‐old) male and female flies increased their response to food odours, although it did not change their preference for the type of odour (protein or sugar). Protein deprivation of mature (14–17‐day‐old) male and female flies also increased their response to food odours compared to protein‐fed flies. Protein‐deprived females were highly attracted to odours from protein sources in particular. Odours from natural food sources, guava juice, and chicken faeces, were more attractive to food‐deprived flies than were odours from artificial sugar and protein sources. Attraction to food odours increased significantly with increasing age for protein‐deprived females of all species. For males and females of all species, nutritional state was a more important factor than mating status in influencing responses of flies to food odours. Practical implications of these findings are discussed in terms of strategies for fruit fly control using food baits.  相似文献   

14.
Rhagoletis pomonella Walsh (Diptera: Tephritidae) originating from domesticated apple (Malus pumila), hawthorn (Crataegus mollis) (Rosaceae), and flowering dogwood (Cornus florida) (Cornaceae) were tested sequentially in flight‐tunnel assays to volatile blends previously identified from the three fruit types. The majority of flies flew to odor sources containing their natal blend (68–83%). Some flies from each fruit type also flew to non‐natal fruit blends (11–39%), but of these non‐natal responders the vast majority were flies that responded to their natal blend as well. The results indicate that individual flies within R. pomonella populations infesting different host types have different degrees of specificity with respect to discriminating among fruit volatile blends, and that a moderate proportion of apple, hawthorn, and dogwood flies (10–30%) are broad responders, with the capacity to recognize and orient to more than one blend. The observed variability in response specificity could facilitate sympatric shifts to new host plants.  相似文献   

15.
The Ethiopian fruit fly, Dacus ciliatus (Loew) (Diptera: Tephritidae), is a significant pest of cucurbit crops in Asia and Africa and is currently controlled with insecticides. The sterilizing effect of gamma radiation on D. ciliatus adults was investigated to assess the suitability of sterile insect technique (SIT) for use as an alternative, non‐chemical strategy for the control of this pest. Late pupae (48 h before emergence) were irradiated with 60, 80, 100, 120, and 140 Gy of gamma rays emitted by a 60Co source. Following emergence, the biological characteristics of the experimental cohorts (including all possible male‐female combinations of irradiated and untreated flies) were recorded. No significant negative effects of irradiation on pupal eclosion or the ability of newly emerged flies to fly were observed. Samples of eggs at reproductive fly‐ages (12‐, 15‐, and 17‐day‐old pairs) were collected and their hatch rates were assessed. At 60 Gy, females were completely sterilized, whereas complete sterilization of the males was observed only at 140 Gy (a small amount of fertility persisted even at 120 Gy). In addition to the above experiments, three fruit infestation trials were conducted with zucchini [Cucurbita pepo L. (Cucurbitaceae)] as the plant host and the pupae produced in those trials were collected and recorded. We observed significant (ca. 10%) infestation following treatment with up to 120 Gy and zero progeny only at 140 Gy, mirroring the egg‐hatch results. Our findings support the feasibility of SIT for the control of D. ciliatus.  相似文献   

16.
The invasion of an established community by new species can trigger changes in community structure. Invasions often occur in phytophagous insect communities, the dynamics of which are driven by the structure of the host assemblage and the presence of competitors. In this study, we investigated how a community established through successive invasions changed over time, taking the last invasion as the reference. The community included four generalist and four specialist species of Tephritidae fruit flies. We analyzed a long‐term database recording observed numbers of flies per fruit for each species on 36 host plants, over 18 years, from 1991 to 2009. Community structure before the last invasion by Bactrocera zonata in 2000 was described in relation to host plant phylogeny and resource availability. Changes in the host range of each species after the arrival of Bzonata were then documented by calculating diversity indices. The flies in the community occupied three types of niches defined on the basis of plant phylogeny (generalists, Solanaceae specialist, and Cucurbitaceae specialists). After the arrival of Bzonata, no change in the host range of specialist species was observed. However, the host ranges of two generalist species, Ceratitis quilicii and Ceratitis capitata, tended to shrink, as shown by the decreases in species richness and host plant α‐diversity. Our study shows increased host specialization by generalist phytophagous insects in the field following the arrival of an invasive species sharing part of their resources. These findings could be used to improve predictions of new interactions between invaders and recipient communities.  相似文献   

17.
In field-cage studies, we investigated how the foraging behavior of tephritid fruit flies is modified by experience immediately prior to release on host plants. We observed females of a relatively monophagous species,Rhagoletis mendax (blueberry maggot fly), an oligophagous species,Rhagoletis pomomella (apple maggot fly), and a polyphagous species,Ceratitis capitata (Mediterranean fruit fly). Just prior to release on a host plant, the following kinds of stimuli were supplied: (1) single oviposition in a host fruit, (2) contact with 20% sucrose, (3) contact with a mixture of protein food (bird feces and sucrose), (4) contact with water, and (5) a walk over a host-plant leaf. When flies foraged on host plants without resources, search was most intensive (as measured by number of leaves visited) following a single oviposition in fruit, but residence time generally was the same following exposure to sugar, protein, and fruit stimuli.Rhagoletis mendax andC. capitata females visited the fewest leaves following exposure to water or host leaves, whereasR. pomonella foraged equally intensively following exposure to food stimuli, water, or leaves. On host plants containing resources (fruit and protein food), a single oviposition dramatically increased the number of females of all three species that found fruit compared to females that received experience with food, water or foliar stimuli. We found no significant effect of recent brief experience with any of the stimuli on subsequent attraction to protein food. Overall,C. capitata exhibited a higher propensity to abandon host plants than eitherR. mendax orR. pomonella. We suggest that this may reflect adaptations to differences in distribution of host plants in nature, strategies of dispersal, and host range.  相似文献   

18.
Among Cucurbitaceae, Cucumis melo is one of the most important cultivated cucurbits. They are grown primarily for their fruit, which generally have a sweet aromatic flavor, with great diversity and size (50 g to 15 kg), flesh color (orange, green, white, and pink), rind color (green, yellow, white, orange, red, and gray), form (round, flat, and elongated), and dimension (4 to 200 cm). C. melo can be broken down into seven distinct types based on the previously discussed variations in the species. The melon fruits can be either climacteric or nonclimacteric, and as such, fruit can adhere to the stem or have an abscission layer where they will fall from the plant naturally at maturity. Traditional plant breeding of melons has been done for 100 years wherein plants were primarily developed as open-pollinated cultivars. More recently, in the past 30 years, melon improvement has been done by more traditional hybridization techniques. An improvement in germplasm is relatively slow and is limited by a restricted gene pool. Strong sexual incompatibility at the interspecific and intergeneric levels has restricted rapid development of new cultivars with high levels of disease resistance, insect resistance, flavor, and sweetness. In order to increase the rate and diversity of new traits in melon it would be advantageous to introduce new genes needed to enhance both melon productivity and melon fruit quality. This requires plant tissue and plant transformation techniques to introduce new or foreign genes into C. melo germplasm. In order to achieve a successful commercial application from biotechnology, a competent plant regeneration system of in vitro cultures for melon is required. More than 40 in vitro melon regeneration programs have been reported; however, regeneration of the various melon types has been highly variable and in some cases impossible. The reasons for this are still unknown, but this plays a heavy negative role on trying to use plant transformation technology to improve melon germplasm. In vitro manipulation of melon is difficult; genotypic responses to the culture method (i.e., organogenesis, somatic embryogenesis, etc.) as well as conditions for environmental and hormonal requirements for plant growth and regeneration continue to be poorly understood for developing simple in vitro procedures to culture and transform all C. melo genotypes. In many cases, this has to be done on an individual line basis. The present paper describes the various research findings related to successful approaches to plant regeneration and transgenic transformation of C. melo. It also describes potential improvement of melon to improve fruit quality characteristics and postharvest handling. Despite more than 140 transgenic melon field trials in the United States in 1996, there are still no commercial transgenic melon cultivars on the market. This may be a combination of technical or performance factors, intellectual property rights concerns, and, most likely, a lack of public acceptance. Regardless, the future for improvement of melon germplasm is bright when considering the knowledge base for both techniques and gene pools potentially useable for melon improvement.  相似文献   

19.
The cherry fruit fly (CFF), Rhagoletis cingulata Loew (Diptera: Tephritidae: Trypetini), is endemic to eastern North America and Mexico, where its primary native host is black cherry [Prunus serotina Ehrh. (Rosaceae)]. Cherry fruit fly is also a major economic pest of the fruit of cultivated sweet (Prunus avium L.) and tart (Prunus cerasus L.) cherries. Adult CFF that attack wild black cherry and introduced, domesticated cherries in commercial and abandoned orchards are active at different times of the summer, potentially generating allochronic isolation that could genetically differentiate native from sweet and tart CFF populations. Here, we test for host‐related genetic differences among CFF populations in Michigan attacking cherries in managed, unmanaged, and native habitats by scoring flies for 10 microsatellite loci. Little evidence for genetic differentiation was found across the three habitats or between the northern and southern Michigan CFF populations surveyed in the study. Local gene flow between native black cherry, commercial, and abandoned orchards may therefore be sufficient to overcome seasonal differences in adult CFF activity and prevent differentiation for microsatellites not directly associated with (tightly linked to) genes affecting eclosion time. The results do not support the existence of host‐associated races in CFF and imply that flies attacking native, managed, and unmanaged cherries should be considered to represent a single population for pest management purposes.  相似文献   

20.
The present study investigates morphological differentiation among host races of the fruit fly Tephritis conura Loew (Diptera: Tephritidae) for two fitness‐related traits and whether these traits are host induced or genetically determined. Flies were analyzed from independent sympatric regions, and from one syntopic site where parental host plants [Cirsium heterophyllum (L.) Hill. and Cirsium oleraceum (L.) Scop. (Cardueae)] and hybrid plants (C. heterophyllum×C. oleraceum) co‐occur. As both host races may oviposit on hybrid plants and hybrid plants provide an identical environment for larvae of both host races, flies emerging from C. heterophyllum×C. oleraceum hybrids were used to assess whether host‐race morphological differences are genetically determined or due to phenotypic plasticity. No significant size (wing length) differences were found among host races, whereas flies emerging from C. heterophyllum had on average 8.4% longer ovipositors than flies emerging from C. oleraceum. The mean size‐corrected ovipositor length (i.e., the ratio ovipositor/wing length) was 10.3% longer. These proportions were repeated among host races emerging from hybrid plants. Although flies of the C. heterophyllum host race from hybrid plants were smaller than on parental host plants, the ratio ovipositor/wing length was constant. Hybrid flies (which emerged only on hybrid plants) were intermediate in relative and absolute ovipositor length. Thus, ovipositor‐length differences among T. conura host races most likely have a genetic basis. This suggests that host‐related differences in ovipositor length reflect adaptations to the respective host‐plant species, most likely to the host's flower‐head size, whereas both host races experience similar selection regimes on body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号