首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1962-2011年来宁夏不同等级降水的变化特征   总被引:4,自引:0,他引:4  
为了了解宁夏地区不同等级降水的结构特征,以1962-2011年宁夏地区9个气象台站逐日降水资料为基础,运用线性趋势法、相关分析法、Hurst趋势分析法及IDW空间插值法,分析了宁夏地区不同等级降水量、降水日数和降水强度的变化特征.结果表明:年降水量、降水日数整体呈减少趋势,而年降水强度则表现为微弱增加,未来的年降水量将呈反持续性,而年降水日数、降水强度则表现为持续性;从空间变化来看,受不同因素影响,年降水量、降水日数及降水强度均表现为由南至北的减少趋势,且降水量、降水日数的空间分布具有一致性;从时间变化来看,夏季降水量丰、降水日数多、降水强度大,其中暴雨的降水强度最大,冬季则降水量枯、日数少、强度小;年、季不同等级降水事件气候趋势分析表明,年降水量和降水日数呈减小趋势,而受冬、夏、秋小雨及暴雨的影响,年降水强度呈微弱增加之势.  相似文献   

2.
长白山地区生长季降水不均匀性特征   总被引:1,自引:0,他引:1  
利用长白山地区13个台站1960-2007年逐日降水资料,采用降水集中度和降水集中期的概念,提出降水集中时段的指标,并应用这些指标分析了该地区生长季降水特征.结果表明:历年降水集中度平均为0.31,年际、年代际变化特征明显;降水集中度准10年周期波动比较明显;从降水集中度的站间差异看,具有明显的空间非均一性;历年降水集...  相似文献   

3.
降水变化是造成青藏高原草地植被生长年际变异的重要因素,降水量、分配方式及发生时间是降水变化的重要特征.利用2000—2015年青藏高原及附近区域145个气象站点的降水资料,以年降水量表征降水整体状况,以改进的降水集度(PCI)表征年内降水的分配状况,以定义的降水重心(PC)表征降水的集中时期,分析青藏高原降水变化的时空特征;并进一步以归一化植被指数最大值(NDVImax)表征植被生长状况,探讨了青藏高原草地对降水年际变化的响应.结果表明: 青藏高原年降水量和PCI存在明显的梯度特征,PC在西藏南部形成中心.青藏高原灌丛草地NDVImax年际变化对PCI变化响应敏感,降水越均匀越有利于NDVImax的增加,但受到降水量的限制;高寒草甸对降水特征没有表现出显著的相关关系;草原植被NDVImax的年际变化同时受PCI和PC的控制;高寒荒漠植被NDVImax的年际变化主要受降水量的控制.在研究降水变化对青藏高原不同类型植被的影响时,除降水量之外,还需进一步考虑降水的分配格局等特征.  相似文献   

4.
A new method is presented to precipitate proteins and amino acids from reverse micelles by dehydrating the micelles with molecular sieves. Nearly complete precipitation is demonstrated for alpha-chymotrypsin, cytochromec, and trytophan from 2-ethylhexyl sodium sulfosuccinate (AOT)/isooctane/water reverse micelle solutions. The products precipitate as a solid powder, which is relatively free of surfactant. The method does not require any manipulation of pH, ionic strength, temperature, pressure, or solvent composition, and is applicable over a broad range of these properties. This general approach is compared with other techniques. This general approach is compared with other techniques for the recovery of biomolecules from reverse micelles. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
6.
7.
Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.  相似文献   

8.
人工模拟降雨格局变化对红砂种子萌发的影响   总被引:1,自引:0,他引:1  
单立山  李毅  张正中  白蕾  段桂芳  种培芳 《生态学报》2017,37(16):5382-5390
气候变化改变降雨格局,会影响到种子出苗及幼苗生长,进而影响幼苗的更新动态。为探讨降雨格局变化对典型荒漠植物红砂种子萌发特性的影响,利用环境控制生长箱开展了降雨量和降雨间隔时间的双因素控制实验。结果表明:(1)总降雨量增加30%,红砂种子出苗率和发芽势分别平均提高45.69%、39.86%(P0.05),延长降雨间隔时间单次降雨量达到6mm其效果更明显,出苗率和发芽势达到最大值,分别为68.33%、63.33%,表明6mm降水量是促使红砂萌发的最小降雨阈量。(2)总降雨量增加30%显著提高了种子萌发指数和活力指数(P0.05),与自然总降雨量相比,分别平均提高57.67%、121%。总降雨量减少30%虽降低了萌发指数和活力指数,但与自然总降雨量相比差异不显著(P0.05)。(3)降雨量增加30%延长降雨间隔时间处理加快了红砂的萌发进程,缩短了种子的萌发持续时间,其萌发曲线较陡峭。降雨量减少30%对其种子萌发进程影响不大。该研究得到以下主要结论:1)红砂种子萌发主要受到降雨量的影响,但降雨量效应依赖降雨间隔时间,总降雨量一定降雨间隔延长所形成的单次降雨量增加均提高萌发率,增加了红砂繁殖成功率,对其幼苗更新起促进效应;2)在自然状态及降雨减少的情况下红砂种子具有推迟萌发的特性,使其幼苗在更适宜的环境条件下出现和生长的机会增多,从而提高植物对环境的长期适应性。  相似文献   

9.
基于中国南方地区15个省(市、自治区)262个气象台站1959-2008年的降水量资料,分析了季尺度降水量的趋势系数、降水变率、年际及年代际标准化降水距平的变化特征.结果表明:研究期间,中国南方地区降水变化趋势的季节差异较大,大部分地区春季和秋季降水量呈减少趋势,夏季和冬季降水量呈增多趋势,但西南部分地区略有不同;研究区域春旱发生可能性减小,夏旱、秋旱和冬旱发生的可能性增加;春旱更易发生在华南地区和西南地区,夏旱和秋旱发生可能性较高的地区为长江中下游地区和华南地区,冬旱发生可能性较高地区由华南地区扩大为华南和长江中下游地区.中国南方地区春季和秋季降水自20世纪80年代以来明显偏少,夏季和冬季降水在20世纪90年代以前偏少、20世纪90年代偏多、21世纪以来又偏少.中国南方各区域季节尺度降水量标准距平的年代变化基本一致,研究时段内秋季降水量呈减少趋势,夏季和冬季降水量呈增加趋势.  相似文献   

10.
针对蓝猪耳(Torenia fournieri L.)叶片中多糖、色素等物质严重干扰总DNA提取质量的问题,以蓝猪耳叶片为试验材料,分别采用高盐低pH值法、SDS法、CTAB法提取总DNA,并从样品电泳图谱、纯度、得率等方面对三种方法进行评价。结果表明,CTAB法提取总DNA的产率较高、纯度最好,是蓝猪耳总DNA提取的最佳方法。  相似文献   

11.
科尔沁固定沙地植被特征对降雨变化的响应   总被引:5,自引:0,他引:5  
选择科尔沁固定沙地利用一种野外增减雨试验装置研究了沙地植被生长特征对降雨增减变化的响应。结果表明:(1)在6月,降雨增减变化对植物群落高度有显著影响(P0.05)。减雨60%和30%时,植物群落平均高度比对照分别降低8.8%和2.3%,增雨60%和30%时,则分别增加6.8%和1.4%;相比增雨60%,增雨30%更能促进群落盖度的增大;降雨量变化影响群落植株密度。(2)1a的降雨增减变化对沙地植被的多样性和均匀度均没有显著影响,但减雨可显著增加7月物种的丰富度(P0.05)。(3)随着降雨量的增加,地上生物量逐渐增大,在增雨30%时达到最大值;而地下生物量会随着降雨量增加而显著增大,同时,减雨60%也使地下生物量增加。此外,降雨量的增加和减少都会使地下与地上生物量的比值增加。(4)固定沙地地下生物量主要分布在0—20 cm之间,占总地下生物量的52.7%;降雨量的增加显著增加20—40 cm土壤中根系的分布,当降雨量减少60%时,20—40 cm土壤中根系的分布也略有增加,增雨60%和减雨60%对地下生物量在40—60 cm土层的分布具有明显的促进作用。  相似文献   

12.
Three continuous-flow column experiments were conducted to investigate the effects of nitrate loading rate and input concentrations of acetate and calcium on the effectiveness of denitrification to promote microbially induced desaturation and precipitation (MIDP). MIDP differs from microbially induced carbonate precipitation (MICP) in that it relies upon desaturation by biogenic gas production, along with carbonate precipitation, to improve the behavior of saturated granular soil. Denitrification is a stepwise process that is susceptible to inhibition and accumulation of intermediates, like nitrite, due to unfavorable chemical conditions (e.g., low pH). Therefore, nitrate reduction, nitrite accumulation, calcite saturation, and formation of carbonate precipitates were monitored in the columns. Factors investigated in these experiments included the effects of nitrate loading rate and input concentrations of calcium and acetate. Low nitrate-loading rates (i.e., ≤0.7?mol/m2-day) generally led to favorable outcomes (i.e., less accumulation of intermediates and more efficient carbonate precipitation). However, faster precipitation rates associated with low nitrate-loading rates led to smaller carbonate crystals and a less uniform precipitation pattern (i.e., precipitation focused near the nutrient source). Input concentrations of calcium and acetate also affected MIDP, but to a lesser extent than nitrate loading rate. The most important stimulated denitrifying bacteria, identified via 16S rDNA sequencing of suspended and dissolved DNA in the soil columns, were Bacillus species, Pseudomonas species, Brevundimonas species, and members of the Rhizobiaceae family. The results support that lower nitrate loading rates can be beneficial for MIDP although higher nitrate loading rates might be useful for some soil improvement applications.  相似文献   

13.
Microbially induced carbonate precipitation (MICP) and associated biogas production may provide sustainable means of mitigating a number of geotechnical challenges associated with granular soils. MICP can induce interparticle soil cementation, mineral precipitation in soil pore space and/or biogas production to address geotechnical problems such as slope instability, soil erosion and scour, seepage of levees and cutoff walls, low bearing capacity of shallow foundations, and earthquake-induced liquefaction and settlement. Microbial denitrification has potential for improving the mechanical and hydraulic properties of soils because it promotes precipitation of calcium carbonate (CaCO3) and produces nitrogen (N2) gas without generating toxic by-products. We evaluated the potential for inducing carbonate precipitation in soil via bacterial denitrification using bench-scale experiments with the facultative anaerobe Pseudomonas denitrificans. Bench-scale experiments were conducted (1) without calcium in an N-rich bacterial growth medium in 2.0 L glass batch reactors and (2) with a source of calcium in sand-filled acrylic columns. Changes of pH, alkalinity, NO3? and NO2? in the batch reactors and columns, quantification of biogas production and observations of calcium-carbonate precipitation in the sand-filled columns indicate that denitrification led to carbonate precipitation and particle cementation in the pore water as well as a substantial amount of biogas production in both systems. These results document that bacterial denitrification has potential as a soil improvement mechanism.  相似文献   

14.
Does precipitation variability increase from mesic to xeric biomes?   总被引:1,自引:0,他引:1  
Desert precipitation is often characterized as more variable than precipitation in nondesert biomes. However, empirical support for this generalization is lacking. I analysed precipitation variability in five desert and four nondesert biomes that represent a xeric to mesic gradient in the South‐western United States, using data from 328 weather stations, for a total of 18 337 station‐years. I examined precipitation variability at two temporal scales: among years and among months, within years. Each of these scales was analysed for annual precipitation, summer precipitation and winter precipitation for a total of 18 separate analyses. Overall, precipitation variability does increase as precipitation decreases. However, I found little support for the generalization that desert precipitation is more variable than precipitation in nondeserts. At most time scales, many south‐western American desert biomes are no more variable than nondesert biomes. The level of variability is highly dependent on which desert biome is under study, where in the biome a particular site is located, and what time scale is used to measure variability. Certain desert sites are in fact more variable than nondesert sites, in some cases by as much as fivefold. However, and perhaps more importantly, each desert biome includes many sites that are no more variable, across many or all time scales, than sites in the grassland or pine forest biomes. These results emphasize the importance of measuring variability for each study site of interest and caution against extrapolating from a few sites to biomes or gradients in general. Implications for the study of adaptations to environmental variability are discussed.  相似文献   

15.
《植物生态学报》2016,40(7):658
Aims Under global climate change, precipitation patterns were predicted to change with larger seasonal and annual variations and more extreme events in the semiarid regions of northern China. Water availability is one of the key limited factors in semiarid grasslands. Changes in precipitation patterns will inevitably affect ecosystem structure and function through soil water condition. Our objective was to investigate the response of soil water content to changes of precipitation pattern, especially its pulse response to precipitation events.
Methods Two semiarid steppe sites (Duolun and Xilinhot) in Nei Mongol were chosen and meteorological stations were installed to monitor precipitation and soil volumetric water content (VWC) at five soil depths (0-10 cm, 10 cm, 20 cm, 30 cm, 50 cm) from 2006 to 2013. The pulse response of VWC at 0-10 cm to an individual precipitation event was simulated by an exponential equation.
Important findings Significant seasonal and inter-annual variations of VWC were observed at the Duolun and Xilinhot sites. VWC at 50 cm soil layer in Xilinhot showed an obvious increase during the early spring due to the influences of snow melting. Mean surface (0-10 cm soil layer) VWC was significantly correlated with annual precipitation across eight years, but VWC in the deeper soil layers (10-50 cm) were not impacted by precipitation. We also found that the precipitation event larger than 2 mm could induce a significant increase in surface (0-10 cm soil layer) VWC, and could be regarded as an effective precipitation in this region. The maximum increment of surface VWC after the events and lasting time (Tlasting) were determined by the event size, while showed negatively linear correlations with the initial soil water content before the events. Vegetation development (leaf area index) did not show significant impacts on the responses of surface soil moisture to precipitation pulses. The infiltration depth of rain water was also determined by rain size and pre-event soil moisture. In average, soil water can infiltrate 1.06 cm and 0.79 cm deeper in Duolun and Xilinhot with 1 mm more precipitation, respectively. Therefore, our results suggest that the event size and pre-event soil moisture were the most important factors affecting response patterns of soil moisture to rain events in semiarid ecosystems.  相似文献   

16.
A casein-agar plate assay was used for the quantitative determination of both mesophilic and thermophilic proteases. Because many proteases are thermostable, assay at higher temperatures is possible. The sensitivity of the plate assay increased with temperature, the optimum assay temperature depending on the thermostability of the enzyme (e.g. Thermus protease, 75 degrees C; thermolysin, 65 degrees C; trypsin, 65 degrees C; alpha-chymotrypsin, 45 degrees C). A positive correlation was observed between incubation temperature and the density of the para-casein precipitate, increasing the accuracy of diameter measurement. Using this modified method, thermostable proteases could be assayed at levels well below the limits of detection of other methods (e.g. 40 pg of thermolysin and 300 pg of trypsin detectable at 65 degrees C, a 16-fold increase in the sensitivity for trypsin compared with a conventional plate assay (Fossum, K. (1970) Acta Pathol. Microbiol. Scand. Sect. B 78, 350-361)). The sensitivity of the plate assay could be further increased by the inclusion of some detergents and chaotropic agents in the gel.  相似文献   

17.
内蒙古半干旱草原土壤水分对降水格局变化的响应   总被引:5,自引:0,他引:5       下载免费PDF全文
在全球气候变化背景下, 未来我国北方半干旱地区的降水格局将呈现出季节与年际间降水波动增强和极端降水事件增加的趋势。水分是半干旱草原的主要限制因子, 降水格局变化导致的土壤水分状况的改变必然对生态系统的结构和功能产生显著的影响。该研究选取内蒙古多伦和锡林浩特两个典型半干旱草原群落, 通过分析2006-2013年的降水和多层次土壤(0-10 cm, 10 cm, 20 cm, 30 cm和50 cm)含水量连续观测数据, 研究降水格局变化对土壤水分状况及其垂直分布的影响, 特别是土壤水分对降水事件的脉冲响应过程。结果表明: 两个站点的土壤含水量均呈现显著的季节及年际间波动, 其中土壤表层 0-10 cm水分波动更剧烈。锡林浩特50 cm处土壤含水量波动较大, 主要由于春季融雪的影响。年际间多伦和锡林浩特生长季土壤表层0-10 cm土壤含水量与降水量存在显著的正相关关系, 下层(10-50 cm)土壤含水量与降水量相关性不显著。研究发现小至2 mm的降水事件就能够引起两个站点表层0-10 cm土壤含水量的升高, 即该地区有效降水为日降水量> 2 mm。表层0-10 cm土壤含水量对独立降水事件的脉冲响应可通过指数方程很好地拟合。降水事件的大小决定了降水后表层0-10 cm土壤含水量的最大增量和持续时间, 同时这个脉冲响应过程还受到降水前土壤含水量的影响, 但该过程中并未发现植被因子(叶面积指数)的显著影响。降水后水分下渗深度及该深度的土壤含水量增量主要由降水事件的大小主导, 同时受到降水前土壤含水量的影响。在多伦和锡林浩特, 平均每增加1 mm降水, 下渗深度分别增加1.06和0.79 cm。由此作者认为, 在内蒙古半干旱草原, 降水事件大小和降水前土壤干湿状况是影响土壤水分对降水响应的主要因素, 而植被因子的影响较小。  相似文献   

18.
大针茅(Stipa grandis)是内蒙古草原的优势物种, 研究其幼苗在不同降雨格局下的响应特征, 可以为进一步研究降雨格局变化下内蒙古典型草原的响应特征提供科学依据。在中国科学院内蒙古草原生态系统定位研究站, 利用开顶式生长室进行控制试验模拟降雨格局变化, 研究了大针茅幼苗对总降雨量和降雨间隔时间变化的响应。结果表明: 1)总降雨量增加50%使大针茅幼苗生长季末的地上生物量平均增加23% (p < 0.05), 而降雨间隔时间由5天增长为15天使地上生物量平均增加48.8% (p < 0.001)。2)总降雨量对大针茅幼苗的地下生物量没有显著影响; 而在低降雨量条件下, 降雨间隔时间增长使地下生物量增加56.2% (p < 0.001), 在高降雨量条件下作用不显著。3)总降雨量和降雨间隔时间对根冠比的效应都依赖于对方水平的高低, 总降雨量增大只在较长降雨间隔条件下使根冠比发生改变(-28.4%, p < 0.05), 降雨间隔时间增长只在高降雨量条件下使根冠比发生改变(-28.8%, p < 0.05)。4)处理期间, 在处理时间分别为30天和45天时, 大针茅幼苗地上生物量、地下生物量和总生物量的差异都主要取决于总降雨量; 而在处理时间为75天时, 其差异则都主要取决于降雨间隔时间。该研究得到以下主要结论: 1)降雨间隔时间与总降雨量一样, 是影响大针茅幼苗生长的关键因素之一。2)总降雨量对大针茅幼苗生长的效应与降雨间隔时间的长短紧密相关。3)降雨格局对大针茅幼苗生长的影响机制随着幼苗的生长期不同而改变。  相似文献   

19.
《植物生态学报》2015,39(7):762
Aims Water use efficiency (WUE) is an important parameter to understand the coupling between the water, and carbon cycles of terrestrial ecosystems. Previous studies on the grassland ecosystem WUE on the Qinghai-Xizang Plateau mainly based on annual precipitation (AP). However, vegetation water use mainly occurs in growing season. Therefore, we aimed to explore the differences of ecosystem WUE between alpine meadow and alpine steppe, and the relationships between ecosystem WUE and environmental factors from 2000 to 2010, using annual precipitation use efficiency (PUEa), growing season precipitation use efficiency (PUEgs), growing season water use efficiency (WUEgs) based on AP, growing season precipitation (GSP) and growing season evapotranspiration (ETgs ) respectively. Methods Combining satellite-derived above-ground net primary productivity (ANPP), satellite-derived evapotranspiration and meteorological data from 2000 to 2010, we calculated PUEa (ANPP / AP), PUEgs (ANPP / GSP) and WUEgs (ANPP / ETgs) to find the differences of PUEa, PUEgs and WUEgs between alpine meadow and alpine steppe. Moreover, we explored the relationships between PUEa, PUEgs or WUEgs and precipitation (or evapotranspiration) or air temperature. Important findings We found that (1) the PUEa and PUEgs of alpine meadow were higher than that of alpine steppe, but there were no significant difference between WUEgs of the two grassland types, indicating that there may be similar intrinsic water use efficiencies of the two grassland types. (2) The inter-annual variation of PUEa and PUEgs were similar while WUEgs showed a larger fluctuation, implying that ET-based WUEgs was more sensitive than precipitation-based PUEa and PUEgs, therefore WUEgs is a better indicator of ecosystem water use efficiency than PUEa or PUEgs. (3) The PUEa, PUEgs and WUEgs were negatively correlated with AP, GSP and ETgs respectively, reflecting a consistency of the three water use efficiency measurements. In the alpine steppe, only WUEgs was observed positively correlated with air temperature among the three measurements, but in the alpine meadow, no significant relationships between water use efficiency and air temperature was detected, suggesting that the WUEgs of alpine steppe was more sensitive to air temperature than that of alpine meadow.  相似文献   

20.
The effects in field manipulation experiments are strongly influenced by amplified interannual variation in ambient climate as the experimental duration increases. Soil respiration (SR), as an important part of the carbon cycle in terrestrial ecosystems, is sensitive to climate changes such as temperature and precipitation changes. A growing body of evidence has indicated that ambient climate affects the temperature sensitivity of SR, which benchmarks the strength of terrestrial soil carbon–climate feedbacks. However, whether SR sensitivity to precipitation changes is influenced by ambient climate is still not clear. In addition, the mechanism driving the above phenomenon is still poorly understood. Here, a long-term field manipulation experiment with five precipitation treatments (−60%, −40%, +0%, +40%, and +60% of annual precipitation) was conducted in a marsh in the Yellow River Delta, China, which is sensitive to soil drying–wetting cycle caused by precipitation changes. Results showed that SR increased exponentially along the experimental precipitation gradient each year and the sensitivity of SR (standardized by per 100 mm change in precipitation under precipitation treatments) exhibited significant interannual variation from 2016 to 2021. In addition, temperature, net radiation, and ambient precipitation all exhibited dramatic interannual variability; however, only ambient precipitation had a significant negative correlation with SR sensitivity. Moreover, the sensitivity of SR was significantly positively related to the sensitivity of belowground biomass (BGB) across 6 years. Structural equation modeling and regression analysis also showed that precipitation treatments significantly affected SR and its autotrophic and heterotrophic components by altering BGB. Our study demonstrated that ambient precipitation determines the sensitivity of SR to precipitation treatments in marshes. The findings underscore the importance of ambient climate in regulating ecosystem responses in long-term field manipulation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号