首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small nuclear gene SOM1 of Saccharomyces cerevisiae was isolated as a multicopy suppressor of a mutation in the IMP1 gene, which encodes the mitochondrial inner membrane peptidase subunit 1 (Imp1). Analysis revealed that Som1 and Imp1 are components of a mitochondrial protein export system, and interaction between these two proteins is indicated by the genetic suppression data. Here we describe the identification of a gene from Kluyveromyces lactis, which restores respiratory function to a S. cerevisiae SOM1 deletion mutant at 28°?C. The sequence of the K. lactis gene predicts a protein product of 8.1-kDa, comprising 71 amino acid residues, with a putative mitochondrial signal sequence at its N-terminus. The protein is 50% identical to its S.cerevisiae counterpart. The expression pattern of a homologous sequence in Leishmania major suggests a more general role for SOM1 in mitochondrial biogenesis and protein sorting. The various Som1 proteins exhibit a highly conserved region and a remarkable pattern of cysteine residues. A protein of the expected size was transcribed and translated in vitro. The Som1 protein was detected in fractions of S. cerevisiae enriched for mitochondria and found to be associated with the inner mitochondrial membrane.  相似文献   

2.
3.
4.
In the yeast Saccharomyces cerevisiae, the product of the nuclear gene CBP2 is required exclusively for the splicing of the terminal intron of the mitochondrial cytochrome b gene. The homologous gene from the related yeast, Saccharomyces douglasii, has been shown to be essential for respiratory growth in the presence of a wild-type S. douglasii mitochondrial genome and dispensable in the presence of an intronless mitochondrial genome. The two CBP2 genes are functionally interchangeable although the target intron of the S. cerevisiaeCBP2 gene is absent from the S. douglasii mitochondrial genome. To determine the function of the CBP2 gene in S. douglasii mitochondrial pre-RNA processing we have constructed and analyzed interspecific hybrid strains between the nuclear genome of S. cerevisiae carrying an inactive CBP2 gene and S. douglasii mitochondrial genomes with different intron contents. We have demonstrated that inactivation of the S. cerevisiaeCBP2 gene affects the maturation of the S. douglasii LSU pre-RNA, leading to a respiratory-deficient phenotype in the hybrid strains. We have shown that the CBP2 gene is essential for excision of the S. douglasii LSU intron in vivo and that the gene is dispensable when this intron is deleted or replaced by the S. cerevisiae LSU intron.  相似文献   

5.
6.
7.
8.
9.
Lack of triose phosphate isomerase activity (TIM) is of special interest because this enzyme works at an important branch point of glycolytic flux. In this paper, we report the cloning and sequencing of the Kluyveromyces lactis gene encoding TIM. Unlike Saccharomyces cerevisiae ΔTPI1 mutants, the K. lactis mutant strain was found to be able to grow on glucose. Preliminary bioconversion experiments indicated that, like the S. cerevisiae TIM-deficient strain, the K. lactis TIM-deficient strain is able to produce glycerol with high yield.  相似文献   

10.
A flocculation conferring gene was cloned from a genomic library of the flocculating strain Saccharomyces cerevisiae IM1-8b as a 5 kb DNA fragment. The shortest DNA fragment (XbaI-XbaI) able to confer the flocculating phenotype was 3.1 kb. Southern analysis revealed that this gene was not homologous to the already reported FLO1 gene since strong hybridization signals were obtained when chromosomes IV and XII were probed with a digoxygenin-labelled fragment and no signal at all was detected for chromosome I. Partial sequencing data unequivocally ascribed the cloned fragment to chromosome XII. The gene was detected in a variety of S. cerevisiae strains regardless of their being phenotypically flocculating. This gene which, we propose as FLO2, is able to complement the flo1 mutation and is suppressed by suppressors (fsu3) that do not affect other FLO genes.  相似文献   

11.
TheSaccharomyces cerevisiae geneABC1 is required for the correct functioning of thebc 1 complex of the mitochondrial respiratory chain. By functional complementation of aS. cerevisiae abc1 ? mutant, we have cloned aSchizosaccharomyces pombe cDNA, whose predicted product is 50% identical to the Abc1 protein. Significant homology is also observed with bacterial, nematode, and even human amino acid sequences of unknown function, suggesting that the Abc1 protein is conserved through evolution. The cloned cDNA corresponds to a singleS. pombe geneabc1Sp, located on chromosome II, expression of which is not regulated by the carbon source. Inactivation of theabc1Sp gene by homologous gene replacement causes a respiratory deficiency which is efficiently rescued by the expression of theS. cerevisiae ABC1 gene. The inactivated strain shows a drastic decrease in thebc 1 complex activity, a decrease in cytochromeaa3 and a slow growth phenotype. To our knowledge, this is the first example of the inactivation of a respiratory gene inS. pombe. Our results highlight the fact thatS. pombe growth is highly dependent upon respiration, and thatS. pombe could represent a valuable model for studying nucleo-mitochondrial interactions in higher eukaryotes.  相似文献   

12.
It has been shown that Saccharomyces cerevisiae, Kluyveromyces lactis, and Candida utilis strains produce the protein exometabolites, which has a protective and reactivating effect on the ultraviolet irradiated yeast cells. The protective effect of the preliminary ultraviolet irradiated (activated) protein exometabolite of all strains increased 2–3 times, though its reactivating activity did not change. Yarrowia lipolytica yeast cells, isolated from the areas with the high daily irradiation, and Endomyces magnusii, the obligate fungi parasites, were characterized by the highest ultraviolet tolerance in comparison with the other strains. However, they did not produce the exometabolites with the antistress effect. Luteococcus casei reactivating factor demonstrated protective and reactivating cross-action in relation to the ultraviolet irradiated S. cerevisiae, K. lactis, and C. utilis cells and were inactive in relation to Y. lipolytica and E. magnusii. Using killer and nonkiller S. cerevisiae strain, it has been shown that the peptide exometabolite accumulation was not associated with toxin production.  相似文献   

13.
The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae—its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic) pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the ‘non-WGD’ Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC) in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the ‘post-WGD’ genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae.  相似文献   

14.
《Journal of molecular biology》2019,431(22):4444-4454
Kinetochores are the multiprotein complexes that link chromosomal centromeres to mitotic-spindle microtubules. Budding yeast centromeres comprise three sequential "centromere-determining elements", CDEI, II, and III. CDEI (8 bp) and CDEIII (∼ 25 bp) are conserved between Kluyveromyces lactis and Saccharomyces cerevisiae, but CDEII in the former is twice as long (160 bp) as CDEII in the latter (80 bp). The CBF3 complex recognizes CDEIII and is required for assembly of a centromeric nucleosome, which in turn recruits other kinetochore components. To understand differences in centromeric nucleosome assembly between K. lactis and S. cerevisiae, we determined the structure of a K. lactis CBF3 complex by electron cryomicroscopy at ∼ 4 Å resolution and compared it with published structures of S. cerevisiae CBF3. We show differences in the pose of Ndc10 and discuss potential models of the K. lactis centromeric nucleosome that account for the extended CDEII length.  相似文献   

15.
The small nuclear gene SOM1 of Saccharomyces cerevisiae was isolated as a multicopy suppressor of a mutation in the IMP1 gene, which encodes the mitochondrial inner membrane peptidase subunit 1 (Imp1). Analysis revealed that Som1 and Imp1 are components of a mitochondrial protein export system, and interaction between these two proteins is indicated by the genetic suppression data. Here we describe the identification of a gene from Kluyveromyces lactis, which restores respiratory function to a S. cerevisiae SOM1 deletion mutant at 28° C. The sequence of the K. lactis gene predicts a protein product of 8.1-kDa, comprising 71 amino acid residues, with a putative mitochondrial signal sequence at its N-terminus. The protein is 50% identical to its S.cerevisiae counterpart. The expression pattern of a homologous sequence in Leishmania major suggests a more general role for SOM1 in mitochondrial biogenesis and protein sorting. The various Som1 proteins exhibit a highly conserved region and a remarkable pattern of cysteine residues. A protein of the expected size was transcribed and translated in vitro. The Som1 protein was detected in fractions of S. cerevisiae enriched for mitochondria and found to be associated with the inner mitochondrial membrane. Received: 22 July 1997 / Accepted: 27 October 1997  相似文献   

16.
17.
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. In the brewers’ yeast Saccharomyces cerevisiae, the major part of these esters is formed by two alcohol acetyltransferases, Atf1 and Atf2. In this paper, the existence of orthologues of these S. cerevisiae alcohol acetyltransferases in several ascomycetous fungi was investigated. Bioinformatic analysis of sequenced fungal genomes revealed the presence of multiple orthologues. The Saccharomyces sensu stricto yeasts all have two genes coding for orthologues. More distantly related fungi like Saccharomyces castelii, Candida glabrata, Kluyveromyces waltii and Kluyveromyces lactis have only one orthologue in their genome. The homology between the identified proteins and the S. cerevisiae alcohol acetyltransferases suggests a role for these orthologues in the aroma-active ester formation. To verify this, the K. lactis orthologue KlAtf was cloned and expressed in S. cerevisiae. Gas chromatographic analysis of small-scale fermentations with the transformant strains showed that, while S. cerevisiae ATF1 overexpression resulted in a substantial increase in acetate ester levels, S. cerevisiae ATF2 and K. lactis ATF overexpression only caused a moderate increase in acetate esters. This study is the first report of the presence of an ester synthesis gene in K. lactis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号