首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With regard to mycorrhiza, conflicting theories try to explain how the balance between fungal demand for carbohydrates and the plant’s needs for nutrients varies, resulting in conflicting predictions. In order to evaluate current concepts, we investigated some metabolic parameters, which are indicative for plant carbon allocation in response to mycorrhization at limited and optimal N supply. Pinus pinaster seedlings were inoculated with living or dead (control) cultures of Pisolithus tinctorius, supplied with ammonium at 4 (limiting) or 7% d−1 (non-limiting) N relative addition rate (RARN), and followed development for 29 days. Mycorrhizal colonization of roots was quantified by the determination of ergosterol. A series of enzymes (sucrose and trehalose metabolism, anaplerosis) and metabolites (soluble carbohydrate, including trehalose; fructose 2,6 bisphosphate, free amino acids) relevant in the C/N exchange between symbionts, and in the carbon allocation and sink strength within the plant were assayed for 2-day-intervals for up to 14 days, and at 5-day-intervals for the rest of the experiment. The first 10 days reflected the establishment of mycorrhizal interaction, and the carbon allocation to the root was higher in M plants independent of N supply. Following this period, carbon allocation became N-related, higher at low, and lower at high N supply. The belowground C investment of M plants was dependent on N availability, but not on N gain. Finally, increased belowground C allocation was accompanied by a shift from plant to fungal metabolism.  相似文献   

2.
3.
Nitrogen fixation within legume nodules results from a complex metabolic exchange between bacteria of the family Rhizobiaciae and the plant host. Carbon is supplied to the differentiated bacterial cells, termed bacteroids, in the form of dicarboxylic acids to fuel nitrogen fixation. In exchange, fixed nitrogen is transferred to the plant. Both the bacteroid and the plant-derived peribacteroid membrane tightly regulate the exchange of metabolites. In the bacteroid oxidation of dicarboxylic acids via the TCA cycle occurs in an oxygenlimited environment. This restricts the TCA cycle at key points, such as the 2-oxoglutarate dehydrogenase complex, and requires that inputs of carbon and reductant are balanced with outputs from the TCA cycle. This may be achieved by metabolism through accessory pathways that can remove intermediates, reductant, or ATP from the cycle. These include synthesis of the carbon polymers PHB and glycogen and bypass pathways such as the recently identified 2-oxoglutarate decarboxylase reaction in soybean bacteroids. Recent labeling data have shown that bacteroids synthesize and secrete amino acids, which has led to controversy over the role of amino acids in nodule metabolism. Here we review bacteroid carbon metabolism in detail, evaluate the labeling studies that relate to amino acid metabolism by bacteroids, and place the work in context with the genome sequences of Mesorhizobium loti and Sinorhizobium meliloti. We also consider a wider range of metabolic pathways that are probably of great importance to rhizobia in the rhizosphere, during nodule initiation, infection thread development, and bacteroid development. Referee: Dr. Robert Ludwig, Department of Molecular, Celluar, and Developmental Biology, Sinheimer Laboratories, University of California, Santa Cruz, CA 95064  相似文献   

4.
The Agrobacterium tumefaciens-induced plant tumour is regarded as a strong sink, containing a well-developed vascular system that guarantees an efficient supply of water and nutrients from the host plant into the tumour. The phloem transport and unloading of the fluorescent dye carboxyfluorescein (CF) was studied to examine the potential pathways for unloading of a low-molecular-mass solute, and was compared with the symplastic movement of potato virus X expressing a green fluorescent protein-coat protein fusion (PVX.GFP-CP). The distribution of both CF and PVX.GFP-CP in the host plant, Nicotiana benthamiana, demonstrated a clear symplastic pathway between the phloem of the host stem and the cells of the tumour, and also a considerable capacity for subsequent cell-to-cell transport between tumour cells. This same pattern of CF transport was also demonstrated independently for the host species Cucurbita maxima and Ricinus communis. In addition to entering the tumour, CF and PVX both moved through the vascular rays of the host stem towards the stele. The results confirm that host and tumour tissues in the Agrobacterium gall are in direct symplastic continuity and emphasize an important symplastic pathway for radial solute transport in stems.Key words: Agrobacterium tumefaciens, carboxyfluorescein, GFP, symplastic phloem unloading, plant tumour, vascular rays   相似文献   

5.
Emission and plant uptake of atmospheric nitrogen oxides (NO + NO2) significantly influence regional climate change by regulating the oxidative chemistry of the lower atmosphere, species composition and the recycling of carbon and nutrients, etc. Plant uptake of nitrogen dioxide (NO2) is concentration-dependent and species-specific, and covaries with environmental factors. An important factor determining NO2 influx into leaves is the replenishment of the substomatal cavity. The apoplastic chemistry of the substomatal cavity plays crucial roles in NO2 deposition rates and the tolerance to NO2, involving the reactions between NO2 and apoplastic antioxidants, NO2-responsive germin-like proteins, apoplastic acidification, and nitrite-dependent NO synthesis, etc. Moreover, leaf apoplast is a favorable site for the colonization by microbes, which disturbs nitrogen metabolism of host plants. For most plant species, NO2 assimilation in a leaf primarily depends on the nitrate (NO3 ) assimilation pathway. NO2–N assimilation is coupled with carbon and sulfur (sulfate and SO2) assimilation as indicated by the mutual needs for metabolic intermediates (or metabolites) and the NO2-caused changes of key metabolic enzymes such as phosphoenolpyruvate carboxylase (PEPc) and adenosine 5′-phosphosulfate sulfotransferase, organic acids, and photorespiration. Moreover, arbuscular mycorrhizal (AM) colonization improves the tolerance of host plants to NO2 by enhancing the efficiency of nutrient absorption and translocation and influencing foliar chemistry. Further progress is proposed to gain a better understanding of the coordination between NO2–N, S and C assimilation, especially the investigation of metabolic checkpoints, and the effects of photorespiratory nitrogen cycle, diverse PEPc and the metabolites such as cysteine, O-acetylserine (OAS) and glutathione.  相似文献   

6.
Xanthomonas oryzae pv. oryzae (Xoo) rapidly triggers a hypersensitive response (HR) and non‐host resistance in its non‐host plant Nicotiana benthamiana. Here, we report that Agrobacterium tumefaciens strain GV3101 blocks Xoo‐induced HR in N. benthamiana when pre‐infiltrated or co‐infiltrated, but not when post‐infiltrated at 4 h after Xoo inoculation. This suppression by A. tumefaciens is local and highly efficient to Xoo. The HR‐inhibiting efficiency of A. tumefaciens is strain dependent. Strain C58C1 has almost no effect on Xoo‐induced HR, whereas strains GV3101, EHA105 and LBA4404 nearly completely block HR formation. Intriguingly, these three HR‐inhibiting strains employ different strategies to repress HR. Strain GV3101 displays strong antibiotic activity and thus suppresses Xoo growth. Comparison of the genotype and Xoo antibiosis activity of wild‐type A. tumefaciens strain C58 and a set of C58‐derived strains reveals that this Xoo antibiosis activity of A. tumefaciens is negatively, but not solely, regulated by the transferred‐DNA (T‐DNA) of the Ti plasmid pTiC58. Unlike GV3101, strains LBA4404 and EHA105 exhibit no significant antibiotic effect on Xoo, but rather abolish hydrogen peroxide accumulation. In addition, expression assays indicate that strains LBA4404 and EHA105 may inhibit Xoo‐induced HR by suppression of the expression of Xoo type III secretion system (T3SS) effector genes hpa1 and hrpD6. Collectively, our results unveil the multiple levels of effects of A. tumefaciens on Xoo in N. benthamiana and provide insights into the molecular mechanisms underlying the bacterial antibiosis of A. tumefaciens and the non‐host resistance induced by Xoo.  相似文献   

7.
Rhizosphere microbes affect plant performance, including plant resistance against insect herbivores; yet, a direct comparison of the relative influence of rhizosphere microbes versus plant genetics on herbivory levels and on metabolites related to defence is lacking. In the crucifer Boechera stricta, we tested the effects of rhizosphere microbes and plant population on herbivore resistance, the primary metabolome, and select secondary metabolites. Plant populations differed significantly in the concentrations of six glucosinolates (GLS), secondary metabolites known to provide herbivore resistance in the Brassicaceae. The population with lower GLS levels experienced ~60% higher levels of aphid (Myzus persicae) attack; no association was observed between GLS and damage by a second herbivore, flea beetles (Phyllotreta cruciferae). Rhizosphere microbiome (disrupted vs. intact native microbiome) had no effect on plant GLS concentrations. However, aphid number and flea beetle damage were respectively about three‐ and seven‐fold higher among plants grown in the disrupted versus intact native microbiome treatment. These differences may be attributable to shifts in primary metabolic pathways previously implicated in host defence against herbivores, including increases in pentose and glucoronate interconversion among plants grown with an intact microbiome. Furthermore, native microbiomes with distinct community composition (as estimated from 16s rRNA amplicon sequencing) differed two‐fold in their effect on host plant susceptibility to aphids. The findings suggest that rhizosphere microbes, including distinct native microbiomes, can play a greater role than population in defence against insect herbivores, and act through metabolic mechanisms independent of population.  相似文献   

8.
9.
Mutations in the chromosomal virulence (chv) region ofA. tumefaciens strain A723 reduce virulence, motility, and ability of the bacteria to bind to plant cells. We conducted experiments to assess the ability ofchv mutants to colonize the rhizosphere ofPisum sativum. The mutation had no effect on ability of bacteria to grow with a defined number of root cap cells as the sole carbon and nitrogen source. Ten days after inoculation, there were up to 103-fold more wild type thanchv mutant bacteria present in the rhizosphere of inoculated plants.  相似文献   

10.

Background  

Photosynthetic organisms convert atmospheric carbon dioxide into numerous metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method, for the economical production of chemicals, or as a source for lipids and starch which can then be converted to biofuels. To harness this potential through metabolic engineering and to maximize production, a more thorough understanding of photosynthetic metabolism must first be achieved. A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed. Intracellular fluxes were then calculated using flux balance analysis (FBA).  相似文献   

11.
Endophytic fungi are an important class of microorganisms, able to interact with a host plant via a mutualistic mechanism without visible symptoms of the fungal colonization. The synergy between endophytic fungi and their host plant can promote morphological, physiological and biochemical changes through the expression of bioactive metabolites. This work aims to correlate metabolic changes in the Combretum lanceolatum plant metabolome with its endophytic fungi Diaporthe phaseolorum (Dp) and Trichoderma spirale (Ts), and to discover corresponding metabolite-biomarkers, with the principal focus being on its primary metabolism. The 1H-NMR metabolomic analysis of qualitative and quantitative changes was performed through multivariate statistical analysis and the identification of primary metabolites was achieved on the Madison Metabolomics Consortium Database. The presence of Dp significantly impacted the plant's metabolic pathways, improving the biosynthesis of primary metabolites such as threonine, malic acid and N-acetyl-mannosamine, which are precursors of special metabolites involved in plant self-defence. This work represents a valuable contribution to advanced studies on the metabolic profiles of the interaction of plants with endophytes.  相似文献   

12.
13.

In this work, a mechanistic model for predicting the dynamic behavior of extracellular and intracellular nutrients, biomass production, and the main metabolites involved in the central carbon metabolism in plant cell cultures of Thevetia peruviana is presented. The proposed model is the first mechanistic model implemented for plant cell cultures of this species, and includes 28 metabolites, 33 metabolic reactions, and 61 parameters. Given the over-parametrization of the model, its nonlinear nature and the strong correlation among the effects of the parameters, a parameter estimation routine based on identifiability analysis was implemented. This routine reduces the parameter’s search space by selecting the most sensitive and linearly independent parameters. Results have shown that only 19 parameters are identifiable. Finally, the model was used for analyzing the fluxes distribution in plant cell cultures of T. peruviana. This analysis shows high uptake of phosphates and parallel uptake of glucose and fructose. Furthermore, it has pointed out the main central carbon metabolism routes for promoting biomass production in this cell culture.

  相似文献   

14.
Industrial plant biotechnology applications include the production of sustainable fuels, complex metabolites and recombinant proteins, but process development can be impaired by a lack of reliable and scalable screening methods. Here, we describe a rapid and versatile expression system which involves the infusion of Agrobacterium tumefaciens into three‐dimensional, porous plant cell aggregates deprived of cultivation medium, which we have termed plant cell packs (PCPs). This approach is compatible with different plant species such as Nicotiana tabacum BY2, Nicotiana benthamiana or Daucus carota and 10‐times more effective than transient expression in liquid plant cell culture. We found that the expression of several proteins was similar in PCPs and intact plants, for example, 47 and 55 mg/kg for antibody 2G12 expressed in BY2 PCPs and N. tabacum plants respectively. Additionally, the expression of specific enzymes can either increase the content of natural plant metabolites or be used to synthesize novel small molecules in the PCPs. The PCP method is currently scalable from a microtiter plate format suitable for high‐throughput screening to 150‐mL columns suitable for initial product preparation. It therefore combined the speed of transient expression in plants with the throughput of microbial screening systems. Plant cell packs therefore provide a convenient new platform for synthetic biology approaches, metabolic engineering and conventional recombinant protein expression techniques that require the multiplex analysis of several dozen up to hundreds of constructs for efficient product and process development.  相似文献   

15.
Ferritins are a large family of iron storage proteins, which are used by bacteria and other organisms to avoid iron toxicity and as a safe iron source in the cytosol. Agrobacterium tumefaciens, a phytopathogen, has two ferritin-encoding genes: atu2771 and atu2477. Atu2771 is annotated as a Bfr-encoding gene (Bacterioferritin, Bfr) and atu2477 as a Dps-encoding gene (D NA binding p rotein from s tarved cells, Dps). Three deletion mutants (Δbfr, Δdps, and bfr-dps double-deletion mutant ΔbdF) of these two ferritin-encoding genes were constructed to investigate the effects of ferritin deficiency on the iron homeostasis, oxidative stress resistance, and pathogenicity of A. tumefaciens. Deficiency of two ferritins affects the growth of A. tumefaciens under iron starvation and excess. When supplied with moderate iron, the growth of A. tumefaciens is not affected by the deficiency of ferritin. Deficiency of ferritin significantly reduces iron accumulation in the cells of A. tumefaciens, but the effect of Bfr deficiency on iron accumulation is severer than Dps deficiency and the double mutant ΔbdF has the least intracellular iron content. All three ferritin-deficient mutants showed a decreased tolerance to 3 mM H2O2 in comparison with the wild type. The tumour induced by each of three ferritin-deficient mutants is less than that of the wild type. Complementation reversed the effects of ferritin deficiency on the growth, iron homeostasis, oxidative stress resistance, and tumorigenicity of A. tumefaciens. Therefore, ferritin plays an important role in the pathogenesis of A. tumefaciens through regulating iron homeostasis and oxidative stress survival.  相似文献   

16.
Herbivorous insects use plant metabolites to inform their host plant selection for oviposition. These host‐selection behaviours are often consistent with the preference–performance hypothesis; females oviposit on hosts that maximize the performance of their offspring. However, the metabolites used for these oviposition choices and those responsible for differences in offspring performance remain unknown for ecologically relevant interactions. Here, we examined the host‐selection behaviours of two sympatric weevils, the Datura (Trichobaris compacta) and tobacco (T. mucorea) weevils in field and glasshouse experiments with transgenic host plants specifically altered in different components of their secondary metabolism. Adult females of both species strongly preferred to feed on D. wrightii rather than on N. attenuata leaves, but T. mucorea preferred to oviposit on N. attenuata, while T. compacta oviposited only on D. wrightii. These oviposition behaviours increased offspring performance: T. compacta larvae only survived in D. wrightii stems and T. mucorea larvae survived better in N. attenuata than in D. wrightii stems. Choice assays with nicotine‐free, JA‐impaired, and sesquiterpene‐over‐produced isogenic N. attenuata plants revealed that although half of the T. compacta larvae survived in nicotine‐free N. attenuata lines, nicotine did not influence the oviposition behaviours of both the nicotine‐adapted and nicotine‐sensitive species. JA‐induced sesquiterpene volatiles are key compounds influencing T. mucorea females’ oviposition choices, but these sesquiterpenes had no effect on larval performance. We conclude that adult females are able to choose the best host plant for their offspring and use chemicals different from those that influence larval performance to inform their oviposition decisions.  相似文献   

17.
18.
19.
20.
The ectoparasitoid wasp, Nasonia vitripennis can enhance its cold tolerance by exploiting a maternally-induced larval diapause. A simple manipulation of the fly host diapause status and supplementation of the host diet with proline also dramatically increase cold tolerance in the parasitoid. In this study, we used a metabolomics approach to define alterations in metabolite profiles of N. vitripennis caused by diapause in the parasitoid, diapause of the host, and augmentation of the host's diet with proline. Metabolic profiles of diapausing and nondiapausing parasitoid were significantly differentiated, with pronounced distinctions in levels of multiple cryoprotectants, amino acids, and carbohydrates. The dynamic nature of diapause was underscored by a shift in the wasp's metabolomic profile as the duration of diapause increased, a feature especially evident for increased concentrations of a suite of cryoprotectants. Metabolic pathways involved in amino acid and carbohydrate metabolism were distinctly enriched during diapause in the parasitoid. Host diapause status also elicited a pronounced effect on metabolic signatures of the parasitoid, noted by higher cryoprotectants and elevated compounds derived from glycolysis. Proline supplementation of the host diet did not translate directly into elevated proline in the parasitoid but resulted in an alteration in the abundance of many other metabolites, including elevated concentrations of essential amino acids, and reduction in metabolites linked to energy utilization, lipid and amino acid metabolism. Thus, the enhanced cold tolerance of N. vitripennis associated with proline augmentation of the host diet appears to be an indirect effect caused by the metabolic perturbations associated with diet supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号