首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The crystal structures of almotriptan {systematic name: N,N‐dimethyl‐2‐[5‐(pyrrolidin‐1‐ylsulfonylmethyl)‐1H‐indol‐3‐yl]ethanamine}, C17H25N3O2S, and almotriptan malate {systematic name: N,N‐dimethyl‐2‐[5‐(pyrrolidin‐1‐ylsulfonylmethyl)‐1H‐indol‐3‐yl]ethanaminium malate, C17H26N3O2S+·C4H5O5, a novel selective serotonin 1B/D agonist, have been determined in order to gain further insight into the structure–activity relationships of triptans. The two structures differ in the orientation of their sulfonylpyrrolidine side chains. A comparison with other triptans reveals that molecules of almotriptan, sumatriptan, zolmitriptan and rizatriptan can adopt two principal conformations. N—H...N, N—H...O and O—H...O hydrogen bonds are responsible for the molecular packing.  相似文献   

2.
In the crystal structure of 6‐phenyl‐3‐thioxo‐2,3,4,5‐tetrahydro‐1,2,4‐triazin‐5‐one, C9H7N3OS, (I), the 1,2,4‐triazine moieties are connected by face‐to‐face contacts through two kinds of double hydrogen bonds (N—H...O and N—H...S), which form planar ribbons along the a axis. The ribbons are crosslinked through C—H...π interactions between the phenyl rings. The molecular structures of two regioisomeric compounds, namely 6‐phenyl‐2,3‐dihydro‐7H‐1,3‐thiazolo[3,2‐b][1,2,4]triazin‐7‐one, C11H9N3OS, (II), and 3‐phenyl‐6,7‐dihydro‐4H‐1,3‐thiazolo[2,3‐c][1,2,4]triazin‐4‐one, C11H9N3OS, (III), which were prepared by the condensation reaction of (I) with 1,2‐dibromoethane, have been characterized by X‐ray crystallography and spectroscopic studies. The crystal structures of (II) and (III) both show two crystallographically independent molecules. While the two compounds are isomers, the unit‐cell parameters and crystal packing are quite different and (II) has a chiral crystal structure.  相似文献   

3.
The novel crystal structures of ethyl (S)‐P‐(4‐oxo‐4H‐benzo[4,5]thiazolo[3,2‐a]pyrimidin‐3‐yl)‐N‐[(R)‐1‐phenylethyl]phosphonamidate, C20H20N3O3PS, I , and diethyl (4‐isopropyl‐2‐oxo‐3,4‐dihydro‐2H‐benzo[4,5]thiazolo[3,2‐a]pyrimidin‐3‐yl)phosphonate, C18H25N2O4PS, II , were characterized by X‐ray diffraction analysis. The crystal packing of I is dominated by two infinite stacks composed of symmetry‐independent molecules linked by distinctively different hydrogen‐bond systems. The structure of II shows a ladder packing topology similar to those observed in related phosphorylated azaheterocycles. Structural studies are supplemented by calculations on the interactions stabilizing the molecular assemblies using the PIXEL method. Additionally, fingerprint plots derived from the Hirshfeld surfaces were generated for each structure to characterize the crystal packing arrangements in detail. The aromaticities of the heterocyclic moieties have been investigated using HOMA and HOMHED parametrization and compared with structures reported previously.  相似文献   

4.
Kryptoracemates are racemic compounds (pairs of enantiomers) that crystallize in Sohnke space groups (space groups that contain neither inversion centres nor mirror or glide planes nor rotoinversion axes). Thus, the two symmetry‐independent molecules cannot be transformed into one another by any symmetry element present in the crystal structure. Usually, the conformation of the two enantiomers is rather similar if not identical. Sometimes, the two enantiomers are related by a pseudosymmetry element, which is often a pseudocentre of inversion, because inversion symmetry is thought to be favourable for crystal packing. We obtained crystals of two kryptoracemates of two very similar compounds differing in just one residue, namely racN‐[(1S ,2R ,3S )‐2‐methyl‐3‐(5‐methylfuran‐2‐yl)‐1‐phenyl‐3‐(pivalamido)propyl]benzamide, C27H32N2O3, (I), and racN‐[(1S ,2S ,3R )‐2‐methyl‐3‐(5‐methylfuran‐2‐yl)‐1‐phenyl‐3‐(propionamido)propyl]benzamide dichloromethane hemisolvate, C25H28N2O3·0.5CH2Cl2, (II). The crystals of both compounds contain both enantiomers of these chiral molecules. However, since the space groups [P 212121 for (I) and P 1 for (II)] contain neither inversion centres nor mirror or glide planes nor rotoinversion axes, there are both enantiomers in the asymmetric unit, which is a rather uncommon phenomenon. In addition, it is remarkable that (II) contains two pairs of enantiomers in the asymmetric unit. In the crystal, molecules are connected by intermolecular N—H…O hydrogen bonds to form chains or layered structures.  相似文献   

5.
The target complexes, bis{(E,E)‐3,5‐bis[4‐(diethylamino)benzylidene]‐4‐oxopiperidinium} butanedioate, 2C27H36N3O+·C4H4O42−, (II), and bis{(E,E)‐3,5‐bis[4‐(diethylamino)benzylidene]‐4‐oxopiperidinium} decanedioate, 2C27H36N3O+·C10H16O42−, (III), were obtained by solvent‐mediated crystallization of the active pharmaceutical ingredient (API) (E,E)‐3,5‐bis[4‐(diethylamino)benzylidene]‐4‐piperidone and pharmaceutically acceptable dicarboxylic (succinic and sebacic) acids from ethanol solution. They have been characterized by melting point, IR spectroscopy and single‐crystal X‐ray diffraction. For the sake of comparison, the structure of the starting API, (E,E)‐3,5‐bis[4‐(diethylamino)benzylidene]‐4‐piperidone methanol monosolvate, C27H35N3O·CH4O, (I), has also been studied. Compounds (II) and (III) represent salts containing H‐shaped centrosymmetric hydrogen‐bonded synthons, which are built from two parallel piperidinium cations and a bridging dicarboxylate dianion. In both (II) and (III), the dicarboxylate dianion resides on an inversion centre. The two cations and dianion within the H‐shaped synthon are linked by two strong intermolecular N+—H...OOC hydrogen bonds. The crystal structure of (II) includes two crystallographically independent formula units, A and B. The cation geometries of units A and B are different. The main N—C6H4—C=C—C(=O)—C=C—C6H4—N backbone of cation A has a C‐shaped conformation, while that of cation B adopts an S‐shaped conformation. The same main backbone of the cation in (III) is practically planar. In the crystal structures of both (II) and (III), intermolecular N+—H...O=C hydrogen bonds between different H‐shaped synthons further consolidate the crystal packing, forming columns in the [100] and [10] directions, respectively. Salts (II) and (III) possess increased aqueous solubility compared with the original API and thus enhance the bioavailability of the API.  相似文献   

6.
Six derivatives of 4‐amino‐1,5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐3‐one (4‐aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen‐bonding motifs compared to the original 4‐aminoantipyrine. The derivatives were synthesized from the reactions of 4‐aminoantipyrine with various aldehyde‐, ketone‐ and ester‐containing molecules, producing (Z)‐methyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C16H19N3O3, (II), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C17H21N3O3, (III), ethyl 2‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]cyclohex‐1‐enecarboxylate, C20H25N3O3, (IV), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]‐3‐phenylacrylate, C22H23N3O3, (V), 2‐cyano‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C14H14N4O2, (VI), and (E)‐methyl 4‐{[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six‐membered intramolecular N—H...O hydrogen‐bonded ring in (II)–(V) and an intermolecular N—H...O hydrogen bond in (VI), whereas there is an intramolecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π interactions, while C—H...π interactions are observed in (II), C—H...O interactions are observed in (I), (III), (V) and (VI), and a C—O...π interaction is observed in (II).  相似文献   

7.
Aminoalkanol derivatives have attracted much interest in the field of medicinal chemistry as part of the search for new anticonvulsant drugs. In order to study the influence of the methyl substituent and N‐oxide formation on the geometry of molecules and intermolecular interactions in their crystals, three new examples have been prepared and their crystal structures determined by X‐ray diffraction. 1‐[(2,6‐Dimethylphenoxy)ethyl]piperidin‐4‐ol, C15H23NO2, 1 , and 1‐[(2,3‐dimethylphenoxy)ethyl]piperidin‐4‐ol, C15H23NO2, 2 , crystallize in the orthorhombic system (space groups P212121 and Pbca, respectively), with one molecule in the asymmetric unit, whereas the N‐oxide 1‐[(2,3‐dimethylphenoxy)ethyl]piperidin‐4‐ol N‐oxide monohydrate, C15H23NO3·H2O, 3 , crystallizes in the monoclinic space group P21/c, with one N‐oxide molecule and one water molecule in the asymmetric unit. The geometries of the investigated compounds differ significantly with respect to the conformation of the O—C—C linker, the location of the hydroxy group in the piperidine ring and the nature of the intermolecular interactions, which were investigated by Hirshfeld surface and corresponding fingerprint analyses. The crystal packing of 1 and 2 is dominated by a network of O—H…N hydrogen bonds, while in 3 , it is dominated by O—H…O hydrogen bonds and results in the formation of chains.  相似文献   

8.
3,5‐Bis(arylidene)‐4‐piperidone (BAP) derivatives display good antitumour and anti‐inflammatory activities because of their double α,β‐unsaturated ketone structural characteristics. If N‐benzenesulfonyl substituents are introduced into BAPs, the configuration of the BAPs would change significantly and their anti‐inflammatory activities should improve. Four N‐benzenesulfonyl BAPs, namely (3E,5E)‐1‐(4‐methylbenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one dichloromethane monosolvate, C28H21F6NO3S·CH2Cl2, ( 4 ), (3E,5E)‐1‐(4‐fluorobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one, C27H18F7NO3S, ( 5 ), (3E,5E)‐1‐(4‐nitrobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one, C27H18F6N2O5S, ( 6 ), and (3E,5E)‐1‐(4‐cyanobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one dichloromethane monosolvate, C28H18F6N2O3S·CH2Cl2, ( 7 ), were prepared by Claisen–Schmidt condensation and N‐sulfonylation. They were characterized by NMR, FT–IR and HRMS (high resolution mass spectrometry). Single‐crystal structure analysis reveals that the two 4‐(trifluoromethyl)phenyl rings on both sides of the piperidone ring in ( 4 )–( 7 ) adopt an E stereochemistry of the olefinic double bonds. Molecules of both ( 4 ) and ( 6 ) are connected by hydrogen bonds into one‐dimensional chains. In ( 5 ) and ( 7 ), pairs of adjacent molecules embrace through intermolecular hydrogen bonds to form a bimolecular combination, which are further extended into a two‐dimensional sheet. The anti‐inflammatory activity data reveal that ( 4 )–( 7 ) significantly inhibit LPS‐induced interleukin (IL‐6) and tumour necrosis factor (TNF‐α) secretion. Most importantly, ( 6 ) and ( 7 ), with strong electron‐withdrawing substituents, display more potential inhibitory effects than ( 4 ) and ( 5 ).  相似文献   

9.
A drug–drug anhydrous pharmaceutical salt containing tolbutamide {systematic name: 3‐butyl‐1‐[(4‐methylbenzene)sulfonyl]urea, TOL, C12H18N2O3S} and metformin (systematic name: 1‐carbamimidamido‐N,N‐dimethylmethanimidamide, MET, C4H11N5) was created based on antidiabetic drug combinations to overcome the poor pharmaceutical properties of the parent drugs. Proton transfer and the proportion of the two components were confirmed by 1H NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Comprehensive characterization of the new pharmaceutical salt crystal, 2‐[(dimethylamino)(iminiumyl)methyl]guanidine (butylcarbamoyl)[(4‐methylbenzene)sulfonyl]azanide, C4H12N5+·C12H17N2O3S?, was performed and showed enhancement of the pharmaceutical properties, such as lower hygroscopicity and greater accelerated stability than the parent drug MET, and higher solubility and dissolution rate than TOL. The property alterations were correlated with the crystal packing features and potential hydrogen‐bonding sites through observed changes in the crystal structures.  相似文献   

10.
The butylidene‐linker models 1‐[2‐(2,6‐dimethylsulfanyl‐9H‐purin‐9‐yl)‐2‐methylidenepropyl]‐4,6‐bis(methylsulfanyl)‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H20N8S4, (XI), 7,7′‐(2‐methylidenepropane‐1,3‐diyl)bis[3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one], C20H22N6O2S2, (XIV), and 7‐[2‐(4,6‐dimethylsulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidin‐1‐yl)‐2‐methylidenepropyl]‐3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one, C19H21N7OS3, (XV), show folded conformations in solution, as shown by 1H NMR analysis. This folding carries over to the crystalline state. Intramolecular π–π interactions are observed in all three compounds, but only (XIV) shows additional intramolecular C—H...π interactions in the solid state. As far as can be established, this is the first report incorporating the pyrrolo[2,3‐d]pyrimidine nucleus for such a study. In addition to the π–π interactions, the crystal structures are also stabilized by other weak intermolecular C—H...S/N/O and/or S...N/S interactions.  相似文献   

11.
The title compounds, 1‐cyano‐2‐hydroxy‐N‐[4‐(methylsulfon­yl)phenyl]but‐2‐en­amide, C12H12N2O4S, PHI492, 1‐cyano‐2‐hydroxy‐N‐[3‐(methyl­sulfonyl)­phenyl]­but‐2‐en­amide, C12H12­N2O4S, PHI493, and N‐[3‐bromo‐4‐(trifluoro­methoxy)­phenyl]‐1‐cyano‐2‐hydroxybut‐2‐en­amide, C12H8Br­F3N2O3, PHI495, are potent inhibitors of Bruton's tyrosine kinase (BTK). The molecular structures of these compounds are similar and they display similar hydrogen‐bonding networks and crystal packing. Examination of the crystal‐packing interaction in the three compounds reveals an alternating direction of adjacent mol­ecules in the crystalline lattice due to intermolecular cyano–amide hydrogen bonding. PHI492, a positional isomer of PHI493, does not form intermolecular O—H?O hydrogen bonds between mol­ecules and crystallizes in a space group different from that of PHI493 and PHI495. The aromatic ring and the amide group of each mol­ecule form a conjugated π‐system which ensures planarity, with further stabilization gained from intramolecular O—H?O hydrogen bonds.  相似文献   

12.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

13.
The title imino–phosphine compound, [PdCl2(C26H22NP)]·CH3CN, was prepared by reaction of N‐[2‐(diphenylphosphanyl)benzylidene]‐2‐methylaniline with dichlorido(cycloocta‐1,5‐diene)palladium(II) in dry CH2Cl2. The PdII cation is coordinated by the P and N atoms of the bidentate chelating ligand and by two chloride anions, generating a distorted square‐planar coordination geometry. There is a detectable trans influence for the chloride ligands. The methyl group present in this structure has an influence on the crystal packing.  相似文献   

14.
15.
The synthesis, crystal structure studies and solvatochromic behavior of 2‐{(2E,4E)‐5‐[4‐(dimethylamino)phenyl]penta‐2,4‐dien‐1‐ylidene}malononitrile, C16H15N3 (DCV[3]), and 2‐{(2E,4E,6E)‐7‐[4‐(dimethylamino)phenyl]hepta‐2,4,6‐trien‐1‐ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π‐conjugated bridge. The compounds of this series have potential use as nonlinear materials with second‐order effects due to their donor–acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]–DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.  相似文献   

16.
The structures of 5‐(2‐hydroxyethyl)‐2‐[(pyridin‐2‐yl)amino]‐1,3‐thiazolidin‐4‐one, C10H11N3O2S, (I), and ethyl 4‐[(4‐oxo‐1,3‐thiazolidin‐2‐yl)amino]benzoate, C12H12N2O3S, (II), which are identical to the entries with refcodes GACXOZ [Váňa et al. (2009). J. Heterocycl. Chem. 46 , 635–639] and HEGLUC [Behbehani & Ibrahim (2012). Molecules, 17 , 6362–6385], respectively, in the Cambridge Structural Database [Allen (2002). Acta Cryst. B 58 , 380–388], have been redetermined at 130 K. This structural study shows that both investigated compounds exist in their crystal structures as the tautomer with the carbonyl–imine group in the five‐membered heterocyclic ring and an exocyclic amine N atom, rather than the previously reported tautomer with a secondary amide group and an exocyclic imine N atom. The physicochemical and spectroscopic data of the two investigated compounds are the same as those of GACXOZ and HEGLUC, respectively. In the thiazolidin‐4‐one system of (I), the S and chiral C atoms, along with the hydroxyethyl group, are disordered. The thiazolidin‐4‐one fragment takes up two alternative locations in the crystal structure, which allows the molecule to adopt R and S configurations. The occupancy factors of the disordered atoms are 0.883 (2) (for the R configuration) and 0.117 (2) (for the S configuration). In (I), the main factor that determines the crystal packing is a system of hydrogen bonds, involving both strong N—H...N and O—H...O and weak C—H...O hydrogen bonds, linking the molecules into a three‐dimensional hydrogen‐bond network. On the other hand, in (II), the molecules are linked via N—H...O hydrogen bonds into chains.  相似文献   

17.
4‐Phenyl‐4‐thiazoline‐2‐thiol is an active pharmaceutical compound, one of whose activities is as a human indolenamine dioxygenase inhibitor. It has been shown recently that in both the solid state and the gas phase, the thiazolinethione tautomer should be preferred. As part of both research on this lead compound and a medicinal chemistry program, a series of substituted arylthiazolinethiones have been synthesized. The molecular conformations and tautomerism of 4‐(2‐methoxyphenyl)‐4‐thiazoline‐2‐thione and 4‐(4‐methoxyphenyl)‐4‐thiazoline‐2‐thione, both C10H9NOS2, are reported and compared with the geometry deduced from ab initio calculations [PBE/6‐311G(d,p)]. Both the crystal structure analyses and the calculations establish the thione tautomer for the two substituted arylthiazolinethiones. In the crystal structure of the 2‐methoxyphenyl regioisomer, the thiazolinethione unit was disordered over two conformations. Both isomers exhibit similar hydrogen‐bond patterns [R22(8) motif] and form dimers. The crystal packing is further reinforced by short S…S interactions in the 2‐methoxyphenyl isomer. The conformations of the two regioisomers correspond to stable geometries calculated from an ab initio energy‐relaxed scan.  相似文献   

18.
Unnatural cyclic α‐amino acids play an important role in the search for biologically active compounds and macromolecules. Enantiomers of natural amino acids with a d configuration are not naturally encoded, but can be chemically synthesized. The crystal structures of two enantiomers obtained by a method of stereoselective synthesis, namely (5R ,8S )‐8‐tert‐butyl‐7‐methoxy‐8‐methyl‐9‐oxa‐6‐azaspiro[4.5]decane‐2,10‐dione, (1), and (5S ,8R )‐8‐tert‐butyl‐7‐methoxy‐8‐methyl‐9‐oxa‐6‐azaspiro[4.5]decane‐2,10‐dione, (2), both C14H21NO4, were determined by X‐ray diffraction. Both enantiomers crystallize isostructurally in the space group P 21, with one molecule in the asymmetric unit and with the same packing motif. The crystal structures are stabilized by C—H…O hydrogen bonds, resulting in the formation of chains along the [100] and [010] directions. The conformation of the 3,6‐dihydro‐2H‐1,4‐oxazin‐2‐one fragment was compared with other crystal structures possessing this heterocyclic moiety. The comparison showed that the title compounds are not exceptional among structures containing the 3,6‐dihydro‐2H‐1,4‐oxazin‐2‐one fragment. The planar moiety was more frequently observed in derivatives in which this fragment was not condensed with other rings.  相似文献   

19.
The crystal structures of cis‐dichlorido(ethylamine‐κN)(piperidine‐κN)platinum(II), [PtCl2(C2H7N)(C5H11N)], (I), cis‐dichlorido(3‐methoxyaniline‐κN)(piperidine‐κN)platinum(II), [PtCl2(C5H11N)(C7H9NO)], (II), and cis‐dichlorido(piperidine‐κN)(quinoline‐κN)platinum(II), [PtCl2(C5H11N)(C9H7N)], (III), have been determined at 100 K in order to verify the influence of the nonpiperidine ligand on the geometry and crystal packing. The crystal packing is characterized by N—H...Cl hydrogen bonding, resulting in the formation of chains of molecules connected in a head‐to‐tail fashion. Hydrogen‐bonding interactions play a major role in the packing of (I), where the chains further aggregate into planes, but less so in the case of (II) and (III), where π–π stacking interactions are of greater importance.  相似文献   

20.
The crystal structures of three new solvates of olanzapine [systematic name: 2‐methyl‐4‐(4‐methylpiperazin‐1‐yl)‐10H‐thieno[2,3‐b][1,5]benzodiazepine], namely olanzapine acetic acid monosolvate, C17H20N4S·C2H4O2, (I), olanzapine propan‐2‐ol hemisolvate monohydrate, C17H20N4S·0.5C3H8O·H2O, (II), and olanzapine propan‐2‐one hemisolvate monohydrate, C17H20N4S·0.5C3H6O·H2O, (III), are presented and compared with other known olanzapine forms. There is a fairly close resemblance of the molecular conformation for all studied analogues. The crystal structures are built up through olanzapine dimers, which are characterized via C—H...π interactions between the aliphatic fragment (1‐methylpiperazin‐4‐yl) and the aromatic fragment (benzene system). All solvent (guest) molecules participate in hydrogen‐bonding networks. The crystal packing is sustained via intermolecular Nhost—H...Oguest, Oguest—H...Nhost, Oguest—H...Oguest and Chost—H...Oguest hydrogen bonds. It should be noted that the solvent propan‐2‐ol in (II) and propan‐2‐one in (III) show orientational disorder. The propan‐2‐ol molecule lies close to a twofold axis, while the propan‐2‐one molecule resides strictly on a twofold axis through the carbonyl C atom. In both cases, the water molecules present positional disorder of the H atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号