首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A capillary electrophoretic method for the analysis of 12 commonly found derivatives and isomers of benzoate and phthalate, including p-toluic acid, p-acetamido and p-hydroxy derivatives of benzoic acid, salicylic acid and its acetyl ester, 2- and 4-isomers of carboxybenzaldehyde, meta-, para-, and ortho-isomers of phthalic acid, and monomethyl terephthalic acid was developed. Capillary electrophoresis (CE) was performed in the free zone electrophoresis mode. Performing CE in 10 mM phosphate buffer, pH 7.0 could separate most of the benzoic acid derivatives except the structural or positional isomers. The positional isomers of phthalic acids could be completely separated with co-addition of alpha- and beta-cyclodextrins. Addition of poly(ethylene glycol) 600 (4%) could further resolve some structural isomers. The CE method developed here is rapid, i.e. complete separation could be achieved in less than 8 min for the nine monoanionic benzoate derivatives and in less than 14 min for the three dianionic phthalate isomers. The new method has good precision and linearity and can be readily applied to real samples for quantitative analysis. It is sensitive and can detect sub-ppm (w/w) level of impurity in real terephthalic samples.  相似文献   

2.
In the first part of this work, the use of capillary electrophoresis (CE) for the separation of two groups of pharmaceuticals, namely a metabolite of tamoxifen and a basic drug substance, DS1, was investigated. The effects of pH and types of modifiers, e.g. surfactant, bile salt, γ-cyclodextrin and hydroxypropyl-β-cyclodextrin on selectivity, separation and peak shape were studied. Besides achieving complete separation of the compounds, the CE system was capable of providing separation with significant improvements in overall peak shape of the compounds compared with HPLC. In the case of the basic drug substance DS1, validation of the CE system developed in terms of linearity, selectivity, sensitivity and reproducibility was satisfactorily performed. At the same time, a study of the sample solvent matrix effects on the separation of this group of compounds was examined. The system was successfully applied to the analysis of laboratory-synthesized samples. Good correlation was observed between CE and HPLC, although higher efficiency and faster speed of separation were obtained using the CE system developed. For the tamoxifen metabolite, special emphasis was placed on the use of CE for the separation of the pair of isomers. This was readily achieved through the introduction of γ-cyclodextrin in the electrolyte. Resolution of at least 1.5 was obtained for the isomers using the CE method.  相似文献   

3.
A method using capillary electrophoresis with direct UV detection has been developed and validated for the determination of Turkey Red Oil (sulfonated castor oil). The highest performance with respect to separation efficiency and analysis time was achieved with 30 mM Tris (pH 8.0) buffer containing 7.5 mM HP-β-CD. The feasibility of the proposed CE method for the analysis of Turkey Red Oil surfactant in industrial water samples is demonstrated. Spiking of real samples gave recoveries between 90 and 106%. The CE results were compared with that obtained by GC-MS. It was concluded that CE can be a good alternative for fast determination of Turkey Red Oil component distribution in industrial process waters with no sample preparation other than dilution. However, the method sensitivity is not satisfactory for monitoring surfactant level in a waste effluent stream.  相似文献   

4.
Acylcarnitine profiling in dried blood spots (DBS) is a useful method for high-throughput newborn screening of metabolic disorders, but differentiation of isobaric and isomeric compounds is not achievable. Chromatographic methods for separation have already been reported but are specific for short-chain acylcarnitines or time-consuming. The aim of this work was to develop a fast ultraperformance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS) method for separation and quantification of a large number of acylcarnitines, including dicarboxylic acylcarnitines and hydroxyacylcarnitines, in DBS and plasma samples. Acylcarnitines from DBS and plasma were converted to their butyl esters and analyzed by electrospray ionization MS/MS. Chromatographic separation was achieved using a UPLC system equipped with an ethylene-bridged hybrid C(18) column. The correlation coefficients of the calibration curves (r(2)) ranged from 0.990 to 0.999. The limit of detection ranged from 0.002 and 0.063 μM for all compounds, and the limit of quantification ranged from 0.004 and 0.357 μM. Precision ranged from 0.8 to 8.8% and the mean recovery was 103%. Profiles of acylcarnitine isomers were investigated in specimens obtained from patients diagnosed with different inborn errors of metabolism. Acylcarnitine concentrations were also measured in 58 term newborns and compared with flow injection analysis measurements. With this newly developed UPLC-MS/MS method, the simultaneous detection of 61 (13 of these labeled) acylcarnitines in DBS and plasma can be achieved in 15 min including postrun equilibration. The method has been validated and can be used as an important component of newborn screening methods as a second-tier test for discrimination and to confirm diagnosis.  相似文献   

5.
The positional isomers of phthalic acids (ortho-, meta-, and para-) and benzoic acid could be completely separated by capillary electrophoresis (CE). A simple CE method employing direct detection in mixed methanol/water buffers is presented. The effect of the electrolyte buffer system, including pH, buffer concentration, and organic solvent on the electrophoretic mobility of the analytes, is investigated. The electroosmotic flow is reversed using cationic surfactant and cetyltrimethylammonium bromide so that anions are separated under the co-EOF mode. The resolution of the analytes and selectivity could be improved by the adjustment of the methanol content. Ion association with the surfactant in methanol/water buffer is discussed. The validity of the method in terms of sensitivity, reproducibility, and linearity is also reported. The text was submitted by the authors in English.  相似文献   

6.
Synthetic cathinones are phenylalkylamine compounds related to natural cathinone from Catha edulis leaves. Due to their sympathomimetic effects comparable to common illicit drugs, these substances are mainly drugs of abuse and constitute the second most frequently seized group of new psychoactive substances. In order to ensure their regulation and to promote public health, reliable analytical tools are required to track these substances. In the present study, we developed a CE hyphenated to laser-induced fluorescence detection method to demonstrate its suitability to perform fast and cost-effective synthetic cathinones analysis. Fourteen compounds including isobaric compounds and position isomers were selected to encompass the large panel of chemical structures. To separate the FITC-labeled analytes (presenting the same negative charge and close mass to charge ratios), MEKC separation mode was selected. Method selectivity was not suitable using common surfactants. In this context, alkyl polyethylene glycol ether surfactants were successfully used as neutral surfactant to overcome this analytical challenge. The effect of surfactant nature on separation performances and migration behaviors of the analytes was also studied. Optimal BGE composition included 75 mM borate buffer at pH 9.3 and 0.4 mM of C12E10 surfactant. Final MEKC separation conditions were proposed to analyze a large panel of synthetic cathinones. This method helped to reach a sensitivity with LOD from 0.1 to 0.4 nM (pg/mL order).  相似文献   

7.
A model applying surfactant self-assembly theory and classical thermodynamics has been developed to aid in the prediction of solid surface cleaning by aqueous surfactant solutions. Information gained from a combination of surfactant self-assembly behavior and cleaning system parameters, such as oil species, surfactant type, temperature, alkalinity, and solid surface type has been shown to provide insight into surface cleaning. The model combines minimization of free energy, pertinent component distribution mechanisms, and surfactant self-assembly processes to provide a methodology for the predicting of oil droplet contact angles. Such predictive capabilities will allow for the development of beneficial environmental and economic changes to industrial and commercial surface cleaning and degreasing processes. Results from the model will be compared to experimental data to verify the capability of the theory to account for the effect of solutions parameters on oil droplet behavior. The model, while approximate in nature, has shown a remarkable quantitative predictive ability.  相似文献   

8.
The report describes a rapid and simple CE method using LIF detection for the analysis of unsaturated disaccharides obtained from enzymatic depolymerization of plasma chondroitin sulfate (CS) isomers. The disaccharide reducing groups were labeled with 2-aminoacridone (AMAC). The fluorotagged products can be separated by reversed-polarity CE using a sodium acetate buffer, pH 3.8, in the presence of 0.05% methylcellulose. The choice of the appropriate electrophoretic conditions was performed after a deep analysis of the most important parameters affecting analyte separation. In particular, the effect of both run buffer concentration and pH on resolution, efficiency, migration times, and peak area was evaluated. The selected electrophoretic conditions allowed us to separate the CS isomers-derived Delta-disaccharides in less than 12 min, also resolving the nonsulfated disaccharides released from CS isomers from those released from hyaluronan (HA). Moreover, these conditions gave a good reproducibility of both the migration times (CV%, 0.25) and the peak areas (CV%, 1.4). Intra- and interassay CV were 5.37 and 7.23%, respectively, and analytical recovery was about 86%. The applicability of the above method to the quantitative and structural disaccharide analyses of plasma CS isomers was investigated. Data obtained from 44 healthy human subjects were compared with those obtained by a fluorophore-assisted carbohydrate electrophoresis (FACE) reference assay, by using the Passing and Bablok regression and Bland-Altman tests. The developed method could represent a good tool for an ultrasensitive analysis of CS isomers in biological samples from different sources, particularly when samples are available in very low amounts.  相似文献   

9.
Summary Wet-chemical cleaning procedures of Si(100) wafers are surface analytically characterized and compared. Hydrophobic surfaces show considerably less native oxides in comparison to hydrophilic surfaces.The growth of the oxide is determined as a function of exposure to air by means of XPS measurements. The chemically shifted Si2p XPS signal is utilized for the quantification of the growth kinetics.One hour after cleaning no chemically shifted Si2p XPS peak is discernible on the hydrophobic surfaces. Assuming homogeneous oxide growth, the detection limit of native oxides is estimated to be below 0.05 nm using an emission angle of 18° with respect to the wafer surface. The calculation of the oxide thickness from the chemically shifted and nonchemically shifted Si2p XPS peak intensities is carried out according to Finster and Schulze [1]. For more than a day after cleaning no surface oxides can be identified on the hydrophobic surfaces. The oxide growth kinetics is logarithmic. The very slow oxidation rate cannot be attributed to fluorine residues since no fluorine is seen by XPS. We explain the slow oxidation rate by a homogeneous hydrogen saturated Si(100) wafer surface.
Oberflächenanalytische Charakterisierung oxidfreier Si(100)-Waferoberflächen
  相似文献   

10.
Peng X  Sternberg E  Dolphin D 《Electrophoresis》2005,26(20):3861-3868
Methods for the separation of photosensitizer isomers, such as benzoporphyrin derivative monoacid, benzoporphyrin ethyl monoacid, 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a, diethyleneglycol diester benzoporphyrin derivative, tin ethyl etiopurpurin, and phthalocyanine tetrasulfonate, have been systematically developed by CE. Detection was accomplished by UV absorption at 214 nm or by LIF with excitation at 442/488 nm and emission at 690 nm. The effects of three major experimental parameters of buffer types, organic solvents, and surfactant additives are described. The optimized separation conditions were determined so as to provide satisfactory separation efficiency and analysis time. The methods are shown to be suitable for the separation and determination of porphyrin and phthalocyanines regioisomers, diastereoisomers, and enantiomers.  相似文献   

11.
Nano-structured polypyrrole (PPY) was used as a coating of solid-phase microextraction (SPME) fibre to increase the extraction efficiency of headspace solid phase microextraction (HS-SPME) of mono-nitrotoluene (MNT) isomers in water samples. The nano-structured PPY was prepared electrochemically by template-free method in the presence of dodecylbenzene sulphonate (DBS) as dopant. Nano-fibrous structures of PPY with a diameter in the range of 38–129 nm were obtained. The porous surface structure of the film, revealed by scanning electron microscopy (SEM), provided high surface areas and allowed for high extraction efficiency of MNT isomers. The extraction procedure was optimised by selecting the appropriate extraction parameters including the time and temperature of adsorption, salt concentration and stirring rate. The calibration graphs obtained by HS-SPME using the proposed fibre followed by GC-FID analysis were linear in a concentration range of 0.1–500 µg L?1 (r > 0.999) with detection limits below 0.012 µg L?1 for three isomers. Repeatability of the method was less than 6% (RSD%, n = 4). Good recoveries (88–108%) were obtained for the extraction of mono-nitrotoluenes in real water samples.  相似文献   

12.
A 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair implemented in DHBI-TPB surfactant sensor was used for the potentiometric quantification of anionic surfactants in detergents and commercial household care products. The DHBI-TPB ion-pair was characterized by FTIR spectroscopy and computational analysis which revealed a crucial contribution of the C–H∙∙∙π contacts for the optimal complex formation. The DHBI-TPB sensor potentiometric response showed excellent analytical properties and Nernstian slope for SDS (60.1 mV/decade) with LOD 3.2 × 10−7 M; and DBS (58.4 mV/decade) with LOD 6.1 × 10−7 M was obtained. The sensor possesses exceptional resistance to different organic and inorganic interferences in broad pH (2–10) range. DMIC used as a titrant demonstrated superior analytical performances for potentiometric titrations of SDS, compared to other tested cationic surfactants (DMIC > CTAB > CPC > Hyamine 1622). The combination of DHBI-TPB sensor and DMIC was successfully employed to perform titrations of the highly soluble alkane sulfonate homologues. Nonionic surfactants (increased concentration and number of EO groups) had a negative impact on anionic surfactant titration curves and a signal change. The DHBI-TPB sensor was effectively employed for the determination of technical grade anionic surfactants presenting the recoveries from 99.5 to 101.3%. The sensor was applied on twelve powered samples as well as liquid-gel and handwashing home care detergents containing anionic surfactants. The obtained results showed good agreement compared to the outcomes measured by ISE surfactant sensor and a two-phase titration method. The developed DHBI-TPB surfactant sensor could be used for quality control in industry and has great potential in environmental monitoring.  相似文献   

13.
1引言爆炸是恐怖袭击的常用手段。对痕量爆炸残留物进行高效检测,从而准确判断炸药的成分和种类,能够为侦破案件提供重要的线索和证据[1,2]。近年来,毛细管电泳技术初步显示了其在爆炸物检验方面的巨大潜力[3~6]。本实验基于毛细管电泳间接紫外吸收检测[7,8]和胶束电动色谱[9],建立了痕量爆炸残余物的系统分析检验方法,通过对爆炸瞬间产生的痕量  相似文献   

14.
本文发展了一种基于离心技术的清洗金纳米八面体表面十六烷基三甲基溴化铵(CTAB)吸附物的有效方法.选择合适的离心转速和离心次数,可以驱除金纳米八面体表面的CTAB分子.通过热失重分析、表面增强拉曼光谱和傅里叶红外光谱表征可以推测,金纳米八面体经合适的离心清洗后,表面残留的少量CTAB分子通过疏水作用由烷基长链与金表面形成(亚)单层吸附,同时,与金表面有强相互作用的溴离子发生脱附.溶剂水对CTAB的稀释在离心清洗金纳米八面体表面的过程中发挥着重要作用.金纳米粒子在离心场中的高速运动导致粒子周围双电层发生极化,极化双电层内产生的局部液流引起双电层内物质交换从而也影响了金纳米八面体表面的清洗效果.金纳米八面体在硫酸溶液和碱性硝酸铅溶液中的电化学研究表明,经过离心清洗的金纳米八面体可以直接应用于单晶电化学研究.  相似文献   

15.
For a given type of rock, the effectiveness of oil recovery through wettability alteration is highly dependent upon the nature of the water-soluble surfactant used. Different mechanisms have been proposed by others to explain wettability alteration by surfactants, and understanding the process is crucial to improve recovery performance. Known mechanisms include (1) surfactant adsorption onto the oil-wet solid surface (coating mechanism) and (2) surfactant molecules complexing with contaminant molecules from the crude oil which are adsorbed on the rock surface so as to strip them off (cleaning mechanism). With the second mechanism, the wettability is restored by lifting the contaminant layer away, exposing the rock surface which was originally water-wet. We previously focused on the numerical modeling of the surfactant coating mechanism (Hammond and Unsal Langmuir2009, 25, 12591; 2010, 26, 6206), and we now present a numerical study for the cleaning process. Our new model shows that when a wettability altering surfactant solution is allowed to imbibe spontaneously and acts by the cleaning process, the meniscus advances more rapidly than when there was wettability alteration by coating alone. In our previous model there was a concentration threshold below which imbibition was not possible. That threshold arose because a finite amount of surfactant needs to be adsorbed onto the oil-wet surface to change the contact angle to a water-wet value, but the maximum amount that can be absorbed is limited by the requirement that it be in equilibrium with the surfactant concentration near the meniscus. In the new model, with the cleaning mechanism there is no such threshold, since the cleaning process is driven by the surfactant flux into the vicinity of the advancing meniscus rather than the surfactant concentration there. As long as there are surfactant molecules present in the aqueous solution, the flux is nonzero and molecule pairs can form and alter the wettability by removing the contaminant from the oil-wet surface. However, under very low surfactant concentrations, the process is extremely slow compared to at higher concentrations.  相似文献   

16.
Recently, multi-wall carbon nanotubes (MWCNTs) as adsorbents of solid-phase extraction are attractive because they can be used for enrichment of organic compounds and metal ions at trace levels. In this study, we use the carboxyl modified multi-wall carbon nanotubes (CMMWCNTs) as adsorbents of solid-phase extraction for extraction of linear alkylbenzene sulfonates (LAS), which are widely used anion surfactant with different homologues, and detected by HPLC-UV. The effect of eluent and its volume, sample pH and flow rate, sample volume and the ultrasonic time of sample, the content of the electrolyte (NaCl) were investigated and optimized. The detection limit for LAS homologues was 0.02-0.03 μg L−1 with R.S.D. (n = 6) ranging from 2.04 to 10.03%. The recoveries of LAS homologues in the spiked environmental water samples ranged from 84.8 to 106.1%. The proposed method has been applied successfully to the analysis of LAS in aqueous environmental samples, which demonstrates that CMMWCNTs-based solid-phase extraction is a precision and convenient enrichment method and can be used for analysis of LAS homologues in water samples.  相似文献   

17.
A flow injection(FI) spectrophotometric method for the determination of anionic surfactants was developed on the basis of the competition for the cationic surfactant cetyl pyridine (CP+) chloride between the acidic dye methyl orange (MO) and anionic surfactants. In a pH 5.0 medium the cation of cetyl pyridine (CP+) reacts with dissociated methyl orange (MO-) to form an ion-associate complex, causing a blue shift of lambda(max) from 465 nm for MO- to 358 nm for the CP+ x MO- associate. The MO- in the ion-associate complex can be quantitatively substituted by such anionic surfactants as sodium dodecyl benzene sulfonate (DBS) or sodium lauryl sulfate (LS), leading to an increase in the absorbance measured at 465 nm. This increased absorbance value is proportional to the concentration of anionic surfactants. Various chemical and physical parameters for the FI spectrophotometric method were optimized, and interference-free levels were examined. At the optimized conditions, Beer's law was obeyed in the range 1.4 approximately 25 mg/L sodium DBS for an injected sample volume of 180 microL, and a detection limit of 0.22 mg/L for sodium DBS was achieved at a sampling rate of 90 h(-1). Eleven determinations of a 16 mg/L sodium DBS solution gave a RSD of 0.4%. The proposed method has successfully been applied to the determination of anionic surfactant concentration in waste water and in detergents.  相似文献   

18.
Linear alkylbenzenesulfonates (LAS) are used extensively as surfactants in consumer formulations as a complex mixture of homologues and isomers. Separation of homologues and isomers of LAS is important in industrial and environmental samples in order to establish their behaviour. Here we present a HPLC methodology with fluorescent detection (FD) for the determination of the homologues and isomers as well as the sum of LAS present. The quantification of total LAS was achieved without a column, using the liquid chromatograph as a FIA system. The different homologues were separated using a Lichrospher-100 RP-8 column of 125 × 4 mm using a linear gradient of methanol and 30.0 mM sodium dodecyl sulphate (SDS), increasing the methanol content linearly from 55% to 70% in 16 min. The resolution of isomers was carried out by using two coupled Lichrospher-100 RP-18 columns of 250 × 4 mm. Elution of isomers was done with a gradient of flow rate from 1.0 to 0.25 mL min–1 using a linear gradient of acetonitrile and 5.0 mM SDS increasing the acetonitrile content linearly from 20% to 40% in 160 min. The methods were validated and applied satisfactorily to the determination of LAS in urban wastewater and ground water.  相似文献   

19.
Yao L  Liu Q  Li Y  Yao S 《Journal of separation science》2011,34(18):2441-2447
Separation of inorganic anions by capillary electrophoresis (CE) is usually conducted in co-electroosmotic mode due to the large electrophoretic mobilities of inorganic anions. Semipermanent surfactant coatings have been shown to be effective for CE of inorganic anions due to their strong capability of electroosmotic flow (EOF) manipulation. However, semipermanent coatings often suffer from their unsatisfactory stability. In addition, organic solvent additives are usually required to adjust the selectivity, which also aggravate the degradation of coating. In this work, a novel semipermanent coating consisting of cationic Gemini surfactant 18-10-18 and nonionic surfactant Tween 20 was developed to separate inorganic anions in CE. This coating is easy to prepare and more stable than pure Gemini coating. The introduction of nonionic surfactant in the coating not only suppresses the reversed EOF but can also adjust the selectivity of separation. Good separations of six model anions were achieved, the separation efficiency was as high as 65040-169700 plates/m and the RSDs of the migration times were less than 0.5 and 2.5% for run-to-run and day-to-day assays, respectively. Calibration curves were linear in the range of 0.05-5.0 mM; the detection limits ranged from 20 to 50 μM. More importantly, no organic solvents are required in the background buffer to achieve the satisfactory separations. This guarantees the coating stability and makes the method greener than most of other methods for CE of inorganic anions.  相似文献   

20.
A microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect eight food colorants (tartrazine, fast green FCF, brilliant blue FCF, allura red AC, indigo carmine, sunset yellow FCF, new coccine, and carminic acid), which are commonly used as food additives in various food products. The effects of sodium dodecyl sulfate (SDS) surfactant, organic modifier, cosurfactant, and oil were examined in order to optimize the separation. The amount of organic modifier (acetonitrile) and SDS surfactant were determined as apparent influences on the separation resolution while the type of oil and cosurfactant rarely affected the separation selectivity of the eight colorants. A highly efficient MEEKC separation method, where the eight colorants were separated with baseline resolution within 14 min, was achieved by using a microemulsion solution of pH 2.0 containing 3.31% SDS, 0.81% octane, 6.61% 1-butanol, and 10% acetonitrile. This optimal MEEKC method has a higher separation efficiency and similar detection limit when compared to conventional capillary electrophoresis (CE) method. Furthermore, a sample pretreatment is rarely needed when this MEEKC technique is used to analyze colorants in food products, whereas a suitable sample pretreatment (for example solid-phase extraction) has to be employed prior to CE separation in order to eliminate matrix interferences resulting from the constituents of the food sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号