首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The preparation of superparamagnetic composites obtained by CaCO3 mineralization from supersaturate aqueous solutions is presented. The preparation was conducted in the presence of oleic acid stabilized magnetite nanoparticles as a water‐based magnetic fluid and insoluble templates as gel‐like cross‐linked polymeric beads. The presence of the magnetic particles in the composites provides a facile way for external manipulation using a permanent magnet, thus allowing the separation and extraction of magnetically modified materials. Two ion exchangers based on divinylbenzene/ethyl acrylate/acrylonitrile cross‐linked copolymer—a cation ion exchanger (CIE) and an amphoteric ion exchanger (AIE)—were used, as well as different addition orders of magnetite and CaCO3 crystals growth precursors. The morphology of the composites was investigated by SEM, the polymorphs content by X‐ray diffraction, and the thermal stability by thermogravimetric analysis. Polymer, CaCO3, and magnetite in the composite particles were shown to be present by energy dispersive X‐ray (EDX), XPS, and TEM. The sorption capacity for CuII ions was tested, as compared to samples prepared without magnetite.  相似文献   

2.

A novel copper immobilized on biomimetic assembled carboxymethylcellulose/calcium carbonate hybrid (CuII@CMC/CaCO3) as an efficient heterogeneous catalyst for the synthesis of 1,2,3-triazoles has been described herein. The fabrication of CuII@CMC/CaCO3 is accomplished through a bioinspired mineralization process using sodium carboxymethylcellulose (CMC-Na) as the template and ion exchange agent, while the metathesis, nucleation, assemble, hybridization, and immobilization of Cu(II) occurred by successful treatment with CaCl2, Na2CO3, and CuSO4 in water at room temperature. The resultant CuII@CMC/CaCO3 hybrid was well characterized by various analyses such as FT-IR, XRD, SEM, EDX, EDX-mapping, TEM, and TGA techniques. In the presence of low copper loading of CuII@CMC/CaCO3 hybrid, benzylic halides, azide, and alkynes proceeded smoothly to afford 1,4-disubstituted 1,2,3-triazoles in high yields. The catalyst can be conveniently recovered from the reaction mixture by filter and reused for at least 5 consecutive runs with a slight drop in its catalytic activity. The remarkable activity and stability of the catalyst may be attributed to the coordination of both carboxyl and hydroxyl groups of the hybrid of CMC/CaCO3.

  相似文献   

3.
Transition metal complexes of arginine (using Co(II), Ni(II), Cu(II) and Zn(II) cations separately) were synthesized and characterized by FTIR, TG/DTA‐DrTG, UV‐Vis spectroscopy and elemental analysis methods. Cu(II)‐Arg complex crystals was found suitable for x‐ray diffraction studies. It was contained, one mole CuII and Na+ ions, two arginate ligands, one coordinated aqua ligand and one solvent NO3? group in the asymmetric unit. The principle coordination sites of metal atom have been occupied by two N atoms of arginate ligands, two carboxylate O atoms, while the apical site was occupied by one O atom for CuII cation and two O atoms for CoII, NiII, ZnII atoms of aqua ligands. Although CuII ion adopts a square pyramidal geometry of the structure. CoII, NiII, ZnII cations have octahedral due to coordination number of these metals. Neighbouring chains were linked together to form a three‐dimensional network via hydrogen‐bonding between coordinated water molecule, amino atoms and O atoms of the bridging carboxylate groups. CuII complex was crystallized in the monoclinic space group P21, a = 8.4407(5) Å, b = 12.0976(5) Å, c = 10.2448(6) Å, V = 1041.03(10) Å3, Z = 2. Structures of the other metal complexes were similar to CuII complex, because of their spectroscopic studies have in agreement with each other. Copper complex has shown DNA like helix chain structure. Lastly, anti‐bacterial, anti‐microbial and anti‐fungal biological activities of complexes were investigated.  相似文献   

4.
Two new trinuclear complexes [CuII(NiIIX1)2(C2H5OH)2]· (ClO4)2·2(CH3OH) ( 1 ) and [CuII(NiIIX2)2(H2O)]·(ClO4)2· 0.75(H2O) ( 2 ) (X1 = dianion of 5,6;13,14‐dibenzo‐7,12‐bis(ethoxycarboxyl)‐9‐methyl‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca‐7,11‐diene. X2 = dianion of 5,6;13,14‐dibenzo‐9,10‐cyclohexano‐7,12‐bis(ethoxycarboxyl)‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca7,11‐diene.) have been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR, UV and EPR spectroscopies. The complexes consist of NiIICuIINiII heteronuclear cationic entities. The central CuII atom of 1 lies in an octahedral coordination environment, while that of 2 resides in a square‐pyramidal coordination sphere. The adjacent trinuclear units of 1 are linked together through π‐π stacking interactions resulting in a 1D supramolecular chain, whereas the π‐π stacking interactions between the contiguous units of 2 lead to a 2D structure. The EPR spectra of the two complexes show a signal of an axially elongated octahedral CuII system in 1 and an axially elongated square‐pyramidal CuII system in 2 , respectively. The hyperfine splitting of the CuII atoms (ICu = 3/2) has also been observed in the EPR spectra.  相似文献   

5.
Single crystals of the FeII metal‐organic framework (MOF) with 1,3,5‐benzenetricarboxylate (BTC) as a linker were solvothermally obtained under air‐free conditions. X‐ray diffraction analysis of the crystals demonstrated a structure for FeII‐MOF analogous to that of [Cu3(BTC)2] (HKUST‐1). Unlike HKUST‐1, however, the FeII‐MOF did not retain permanent porosity after exchange of guest molecules. The Mössbauer spectrum of the FeII‐MOF was recorded at 80 K in zero field yielding an apparent quadrupole splitting of ΔEQ = 2.43 mm · s–1, and an isomer shift of δ = 1.20 mm · s–1, consistent with high‐spin central iron(II) atoms. Air exposure of the FeII‐MOF was found to result in oxidation of the metal atoms to afford FeIII. These results demonstrate that FeII‐based MOFs can be prepared in similar fashion to the [Cu3(BTC)2], but that they lack permanent porosity when degassed.  相似文献   

6.
A single crystal to single crystal transmetallation process takes place in the three‐dimensional (3D) metal–organic framework (MOF) of formula MgII2{MgII4[CuII2(Me3mpba)2]3}?45 H2O ( 1 ; Me3mpba4?=N,N′‐2,4,6‐trimethyl‐1,3‐phenylenebis(oxamate)). After complete replacement of the MgII ions within the coordination network and those hosted in the channels by either CoII or NiII ions, 1 is transmetallated to yield two novel MOFs of formulae Co2II{CoII4[CuII2(Me3mpba)2]3}?56 H2O ( 2 ) and Ni2II{NiII4[CuII2(Me3mpba)2]3}? 54 H2O ( 3 ). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and magnetic properties.  相似文献   

7.
The temperature‐dependent dynamic properties of [CuII2(ADCOO)4(DMF)2]?(DMF)2 ( 1 ) and [CuII2(ADCOO)4(AcOEt)2] ( 2 ) crystals were examined by X‐ray crystallography, 1H NMR spectroscopy, and measurements of the dielectric constants and magnetic susceptibilities (ADCOO=adamantane carboxylate, DMF=N,N‐dimethylformamide, and AcOEt=ethyl acetate). In both crystals, four ADCOO groups bridged a binuclear CuII? CuII bond, forming a paddle‐wheel [CuII2(ADCOO)4] structure. The oxygen atoms of two DMF molecules in crystal 1 and two AcOEt molecules in crystal 2 were coordinated at axial positions of the [CuII2(ADCOO)4] moiety, forming [CuII2(ADCOO)4(DMF)2] and [CuII2(ADCOO)4(AcOEt)2], respectively. Two additional DMF molecules were included in the unit cell of crystal 1 , whereas AcOEt was not included in the unit cell of crystal 2 . The structural analyses of crystal 1 at 300 K showed three‐fold rotation of the adamantyl groups, whereas rotation of the adamantyl groups of crystal 2 at 300 K was not observed. Thermogravimetric measurements of crystal 1 indicated a gradual elimination of DMF upon increasing the temperature above 300 K. The dynamic behavior of the crystallized DMF yielded significant temperature‐dependent dielectric responses in crystal 1 , which showed a huge dielectric peak at 358 K in the heating process. In contrast, only small frequency‐dependent dielectric responses were observed in crystal 2 because of the freezing of the molecular rotation of the adamantyl groups. The magnetic behavior was dominated by the strong antiferromagnetic coupling between the two S=1/2 spins of the CuII? CuII site, with magnetic exchange energies (J) of ?265 K (crystal 1 ) and ?277 K (crystal 2 ).  相似文献   

8.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

9.
Calcium carbonate (CaCO3) is one of the most abundant and important biominerals in nature. Due to its biocompatibility, biodegradability and nontoxicity, CaCO3 has been investigated extensively in recent years for various fundamental properties and technological applications. Inspired by basic wall structures of cells, we report a protein‐assisted approach to synthesize CaCO3 into a double‐shelled structural configuration. Due to varying reactivities of outer and inner shells, the CaCO3 microcapsules exhibit different sorption capacities and various resultant structures toward different kinds of heavy metal ions, analogical to biologically controlled mineralization (BCM) processes. Surprisingly, three mineralization modes resembling those found in BCM were found with these bacterium‐like “CaCO3 cells”. Our investigation of the cytotoxicity (MTT assay protocol) also indicates that the CaCO3 microcapsules have almost no cytotoxicity against HepG2 cells, and they might be useful for future application of detoxifying heavy metal ions after further study.  相似文献   

10.
The metal‐coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of its interaction with copper just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, but structural details of the various metal coordination modes have not been fully elucidated in some cases. In the present study, we have employed X‐ray absorption near‐edge spectroscopy as well as extended X‐ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI, and ZnII with an N‐terminal fragment of PrP. The PrP fragment corresponds to four tandem repeats representative of the mammalian octarepeat domain, designated as OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations have provided additional structural and thermodynamic data, and candidate structures have been used to inform EXAFS data analysis. The optimized geometries from DFT calculations have been used to identify potential coordination complexes for multi‐histidine coordination of CuII, CuI, and ZnII in an aqueous medium, modelled using 4‐methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve‐fitting, using full multiple scattering on candidate structures derived from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI, and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as square‐planar [CuII(His)4]2+, digonal [CuI(His)2]+, and tetrahedral [ZnII(His)3(OH2)]2+, respectively.  相似文献   

11.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

12.
The proton‐induced electron‐transfer reaction of a CuII μ‐thiolate complex to a CuI‐containing species has been investigated, both experimentally and computationally. The CuII μ‐thiolate complex [CuII2( LMeS )2]2+ is isolated with the new pyridyl‐containing ligand LMeSSLMe , which can form both CuII thiolate and CuI disulfide complexes, depending on the solvent. Both the CuII and the CuI complexes show reactivity upon addition of protons. The multivalent tetranuclear complex [CuI2CuII2( LS )2(CH3CN)6]4+ crystallizes after addition of two equivalents of strong acid to a solution containing the μ‐thiolate complex [CuII2( LS )2]2+ and is further analyzed in solution. This study shows that, upon addition of protons to the CuII thiolate compound, the ligand dissociates from the copper centers, in contrast to an earlier report describing redox isomerization to a CuI disulfide species that is protonated at the pyridyl moieties. Computational studies of the protonated CuII μ‐thiolate and CuI disulfide species with LSSL show that already upon addition of two equivalents of protons, ligand dissociation forming [CuI(CH3CN)4]+ and protonated ligand is energetically favored over conversion to a protonated CuI disulfide complex.  相似文献   

13.
A series of new hybrid organo-inorganic sorbents with the 3-aminopropionate chelating group was synthesized. The synthesis includes the copolycondensation (sol—gel method) of tetraethoxysilane, 3-aminopropyltriethoxysilane, and several modifiers (MeSi(OEt)3, EtSi(OEt)3, Ti(OEt)4, AlONO3, ZrOCl2) followed by carboxyethylation with acrylic acid. The obtained chelating sorbents were characterized by elemental analysis, FT-IR and 1H NMR spectroscopy, and thermogravimetry. The N-carboxylated sorbents have a higher sorption capacity with respect to metal ions (0.5–0.9 mmol g−1, pH 6.3, NH4OAc, 20 °C) than the starting sorbents with the primary amino group (0.05–0.2 mmol g−1) and manifest high selectivity for copper(II) ion extraction. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1783–1788, August, 2005.  相似文献   

14.
The dioxygen activation of a series of CuICuICuI complexes based on the ligands ( L ) 3,3′‐(1,4‐diazepane‐ 1,4‐diyl)bis(1‐{[2‐(dimethylamino)ethyl](methyl)amino}propan‐2‐ol) ( 7‐Me ) or 3,3′‐(1,4‐diazepane‐1,4‐diyl)bis(1‐{[2‐(diethylamino)ethyl](ethyl)amino}propan‐2‐ol) ( 7‐Et ) forms an intermediate capable of mediating facile O‐atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7‐Me , 7‐Et , and 3,3′‐(1,4‐diazepane‐1,4‐diyl)bis[1‐(4‐methylpiperazin‐1‐yl)propan‐2‐ol] ( 7‐N‐Meppz ) with dioxygen at ?80, ?55, and ?35 °C in propionitrile (EtCN) by UV‐visible, 77 K EPR, and X‐ray absorption spectroscopy, and 7‐N‐Meppz and 7‐Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both ?80 and ?55 °C, the mixing of the starting [CuICuICuI( L )]1+ complex ( 1 ) with O2‐saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [CuIICuII(μ‐η22‐peroxo)CuII( L )]2+ ( 2 ) and the blue [CuIICuII(μ‐O)CuII( L )]2+ species ( 3 ). These observations are consistent with the initial formation of [CuIICuII(μ‐O)2CuIII( L )]1+ ( 4 ), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [CuIICuICuI( L )]2+ ( 5 ) to form the green dioxygen adduct 2 . Assignment of 2 to [CuIICuII(μ‐η22‐peroxo)CuII( L )]2+ is consistent with its reactivity with water to give H2O2 and the blue species 3 , as well as its propensity to be photoreduced in the X‐ray beam during X‐ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1) rapid dioxygen chemistry; 2) facile O‐atom transfer from the activated cluster to substrate; and 3) a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.  相似文献   

15.
Operando X‐ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu‐exchanged SSZ‐13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO‐assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu‐bound NO2 with proximal NH4+ completes the catalytic cycle. N2 is produced in both reduction and oxidation half‐cycles.  相似文献   

16.
The two‐dimensional (2D) layer CuII compound [Cu3(L)2(N3)4] ( 1 ) [L = 2‐amino‐3‐(5‐tetrazole)‐methyate‐N‐pyridine] was synthesized by in‐situ hydrothermal reaction of CuCl2 · 2H2O, NaN3, and 3‐(5‐tetrazole)‐methyate‐N‐pyridine. The central Cu1 and Cu2 atoms are located in five‐coordinate and six‐coordinate arrangements, respectively. Three CuII ions are linked by mixed double EO (end‐on)‐azido‐tetrazole bridges to give trinuclear CuII clusters, which are further extended by EE (end‐to‐end) azido bridges to form 2D metal‐organic layers. The magnetic exchange interactions in complex 1 were investigated by DFT calculations, and the calculated exchange interaction (J = –849 cm–1) revealed that the double EO‐azido‐tetrazole bridges transmit antiferromagnetic coupling between CuII ions.  相似文献   

17.
The isomorphous partial substitution of Zn2+ ions in the secondary building unit (SBU) of MFU‐4l leads to frameworks with the general formula [MxZn(5–x)Cl4(BTDD)3], in which x≈2, M=MnII, FeII, CoII, NiII, or CuII, and BTDD=bis(1,2,3‐triazolato‐[4,5‐b],[4′,5′‐i])dibenzo‐[1,4]‐dioxin. Subsequent exchange of chloride ligands by nitrite, nitrate, triflate, azide, isocyanate, formate, acetate, or fluoride leads to a variety of MFU‐4l derivatives, which have been characterized by using XRPD, EDX, IR, UV/Vis‐NIR, TGA, and gas sorption measurements. Several MFU‐4l derivatives show high catalytic activity in a liquid‐phase oxidation of ethylbenzene to acetophenone with air under mild conditions, among which Co‐ and Cu derivatives with chloride side‐ligands are the most active catalysts. Upon thermal treatment, several side‐ligands can be transformed selectively into reactive intermediates without destroying the framework. Thus, at 300 °C, CoII‐azide units in the SBU of Co‐MFU‐4l are converted into CoII‐isocyanate under continuous CO gas flow, involving the formation of a nitrene intermediate. The reaction of CuII‐fluoride units with H2 at 240 °C leads to CuI and proceeds through the heterolytic cleavage of the H2 molecule.  相似文献   

18.
Bis(2‐pyridylthio)methane [bpytm, (pyS)2CH2] and complexes of this ligand with ZnII, HgII, CuI, and AgI have been prepared and characterised by elemental analysis, by IR, Raman and 1H and 13C NMR spectroscopy, and by X‐ray diffractometry. The ligand is N, N′‐didentate in the ZnII complexes; N‐monodentate in one HgII complex and N, N′‐bis(monodentate) in the other; N‐mono‐N′, S‐didentate in the CuI complex; and N, S′‐bis(mono)‐N′, S‐didentate in the AgI complex. The structural parameters of the ligand in each coordination mode are compared with those of the free ligand and those of the triiodide salt of the protonated ligand.  相似文献   

19.
Thin‐film growth of aragonite CaCO3 on annealed poly(vinyl alcohol) (PVA) matrices is induced by adding Mg2+ into a supersaturated solution of CaCO3. Both the growth rate and surface morphology of the aragonite thin films depend upon the concentration of Mg2+ in the mineralization solution. In the absence of PVA matrices, no thin films are formed, despite the presence of Mg2+. Molecular dynamics simulation of the CaCO3 precursor suggests that the transition of amorphous calcium carbonate to crystals is suppressed in the presence of Mg2+. The role for ionic additives in the crystallization of CaCO3 on organic templates obtained in this study may provide useful information for the development of functional hybrid materials.  相似文献   

20.
A novel one‐dimensional CuII coordination polymer, catena‐poly[bis(μ4‐3‐{[2‐(3‐hydroxy‐2‐oxidobenzylidene)hydrazinylidene]methyl}benzene‐1,2‐diolato)dimethanoltricopper(II)], [Cu3(C14H10N2O4)2(CH3OH)2]n, (I), was constructed with a di‐Schiff base supported centrosymmetric trinuclear CuII subunit. In the subunit, two peripheral symmetry‐related CuII cations have square‐pyramidal CuNO4 geometry and the central third CuII cation lies on an inversion centre with octahedral CuN2O4 geometry. In (I), each partially deprotonated di‐Schiff base 3‐{[2‐(3‐hydroxy‐2‐oxidobenzylidene)hydrazinylidene]methyl}benzene‐1,2‐diolate ligand (Hbcaz3−) acts as a heptadentate ligand to bind the CuII centres into chains along the a axis. A centrosymmetric Cu2O2 unit containing an asymmetrically bridging O atom, being axial at one Cu atom and equatorial at the other Cu atom, links the trinuclear CuII subunit into a one‐dimensional chain, which is reinforced by intramolecular phenol–methanol O—H...O and methanol–phenolate O—H...O hydrogen bonds. Interchain π–π stacking interactions between pyrocatechol units, with a distance of 3.5251 (18) Å, contribute to the stability of the crystal packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号