首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Novel magnetic Fe3O4/polyphosphazene nanofibers were successfully prepared via a facile approach by ultrasonic irradiation. The structure and morphology were characterized by SEM, TEM, EDX, IR and XRD. The characterization results show that the magnetic Fe3O4/polyphosphazene nanofibers are several microns in length and 50–100 nm in diameter with Fe3O4 nanoparticles of 5–10 nm attached on the surface. The interaction between Fe3O4 nanoparticles and polyphosphazene nanofibers was thought as coordination behavior. TG curves show that the magnetic Fe3O4/polyphosphazene nanofibers have good thermostability and high magnetism content of about 44%. Magnetic studies show that the magnetic nanofibers exhibit good superparamagnetic properties with high magnetization saturation value of about 36 emu/g.  相似文献   

2.
Hyperthermia is considered as an effective supplementary cancer treatment. However, the uneven temperature distribution is the major challenge in hyperthermia. Nanotechnology could solve this problem by applying magnetic nanoparticles directly or in nanofibers as implants. Low solubility, poor cancer targeting, and leakage are limitations of free magnetic nanoparticles. In this work, Fe3O4 nanoparticles were loaded into polycaprolactone/chitosan blended nanofibers in various contents. Magnetic, chemical, physical, and morphology of the derived nanofibrous composites were then studied. The results showed the magnetic properties of the nanocomposite had low coercivity, which was close to superparamagnetic particles. Chemical analysis showed that components had no interaction with each other. Nevertheless, Fe3O4 was slightly transformed to other iron oxides. However, the magnetic analysis showed this transformation had no significant effect on final magnetic content of the nanofibers. The results of X‐ray diffraction (XRD) (19.5 nm), transmittance electron microscopy (TEM) (21.6 nm), and vibration sample magnetometer (VSM) (17 nm) suggested that the magnetic nanoparticles were single domain. Thermal analysis results showed that 7% Fe3O4 nanofibers had more heat increase as oppose to other nanofibrous composites in the alternative magnetic field (AMF). Nonetheless, the heat performance of 3% Fe3O4 nanofibers was more than others according to its specific power absorption (SPA). Therefore, due to the importance of using nanoparticles in the least possible content, this method can be used as a postsurgical treatment by applying these nanofibrous composites as implants on the tumor site. Moreover, these nanofiber composites could carry anticancer drugs, which are applied as a multi‐mode treatment system.  相似文献   

3.
Fe3O4/polyaniline (PANI) composite hollow spheres were prepared by using sulfonated polystyrene (SPS) microspheres as templates. The sulfonic acid groups were applied to induce absorbing Fe3O4 nanoparticle, and subsequently, conductive PANI was grown. Finally, the polystyrene cores were selectively dissolved to yield composite hollow microspheres with electromagnetic properties. The analysis results indicated that the adsorption of Fe3O4 on template core by electrostatic interaction resulted in magnetic composite microspheres. The conductivity of composite hollow spheres was remarkably increased after polyvinylpyrrolidone modification which favored the growth of PANI on SPS/Fe3O4 and enhanced the integrity of hollow microspheres. The saturated magnetization of the composite hollow microspheres was tuned from 2.7 to 9.1 emu/g, and the conductivity was in the range from 10?2 to 100?S/cm.  相似文献   

4.
A novel technique of fabricating magnetic thermoplastic nanofibers by the control of the phase separation of immiscible polymer blends during melt extrusion was presented. The magnetic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE)/Fe3O4 composite nanofibers were prepared via the melt extrusion of cellulose acetate butyrate matrix and PVA‐co‐PE preloaded with different amounts of Fe3O4 nanoparticles. The morphologies of magnetic composite nanofibers were characterized by scanning electron microscopy. The uniform dispersion of Fe3O4 nanoparticles in nanofiber matrixes and crystal structures were confirmed using transmission electron microscopy and wide angle X‐ray diffraction. Thermogravimetric analysis was employed to quantify the exact loading amount of Fe3O4 nanoparticles in the composite nanofibers. The magnetic measurements showed that composite nanofibers displayed superparamagnetic behavior at room temperature. With increasing content of Fe3O4 nanoparticles, the saturation magnetization of the magnetic composite nanofiber significantly improved. The prepared magnetic composite nanofibers might have found potential applications in the sensors and bio‐molecular separation fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A versatile process for the preparation of composite films consisting of magnetite (Fe3O4) nanoparticles embedded in a polyaniline (PANI) matrix is reported. Spectroscopic properties of polyaniline matrix (PANI-EB), polyaniline protonated with camphor sulfonic acid (PANI-CSA0.5) PANI-ES and PANI/Fe3O4-CSA0.5 composites were studied, both in the state of the solutions of m-cresol and in thin films processed from the same solvents. The results of these studies indicate that m-cresol can be used for PANI/Fe3O4 composite preparation. Such films show both reasonably high electrical conductivity and magnetic permeability. A controlled application of a magnetic field during the casting process resulted in the formation of the materials with an unusual combination of magnetic and transport properties. The obtained films show the behavior that can be explained by the presence of both ferromagnetic and paramagnetic phases. The superparamagnetic contribution, if any, is very small. Application of the external magnetic field during fabrication of the composites stimulates creation of the aggregates of magnetic particles which, although keeps conductivity at a relatively high level, leads to a small decrease of the conductivity value.  相似文献   

6.
吴国章 《高分子科学》2011,29(5):580-585
A novel method for preparation of polymer-based magnetic microspheres was proposed by utilizing melt reactive blending,which was based on selective location of Fe_3O_4 nanoparticles in PA6 domains of polystyrene(PS)/polyamide 6 (PA6) immiscible blends.The morphology of PA6/Fe_3O_4 composite magnetic microspheres was studied by scanning electronic microscopy(SEM).The composite magnetic microspheres were spherical with a diameter range of 0.5-8μm;the diameter was sharply decreased with a very narrow distri...  相似文献   

7.
One-dimensional (ID) magnetic thermosensitive Fe3O4/poly(N-isopropylacrylamide–N,N′-methylenebisacrylamide) (P(NIPAM-MBA)) peapod-like nanochains have been successfully synthesized by magnetic-field-induced precipitation polymerization using Fe3O4 as building blocks and P(NIPAM-MBA) as linker. Fe3O4 microspheres can be arranged with the direction of an external magnetic field in a line via the dipolar interaction between Fe3O4 microspheres and linked permanently via P(NIPAM-MBA) coating during precipitation polymerization. 1D magnetic Fe3O4/P(NIPAM-MBA) peapod-like nanochains can be oriented and aligned along the direction of the external magnetic field. More interestingly, Fe3O4 microspheres in each peapod were regularly arranged in a line and periodically separated through the P(NIPAM-MBA) layers with a visible interparticle spacing.  相似文献   

8.
A facile method of fabricating novel heat-generating membranes composed of electrospun polyurethane (PU) nanofibers decorated with superparamagnetic iron oxide nanoparticles (NPs) is reported. Electrospinning was used to produce polymeric nanofibrous matrix, whereas polyol immersion technique allowed in situ assembly of well-dispersed Fe3O4 NPs on the nanofibrous membranes without any surfactant, and without sensitizing and stabilizing reagent. The assembly phenomena can be explained by the hydrogen-bonding interactions between the amide groups in the PU matrix and the hydroxyl groups capped on the surface of the Fe3O4 NPs. The prepared nanocomposite fibers showed acceptable magnetization value of 33.12 emu/g, after measuring the magnetic hysteresis loops using SQUID. Moreover, the inductive heating property of electrospun magnetic nanofibrous membranes under an alternating current (AC) magnetic field was investigated. We observed a progressive increase in the heating rate with the increase in the amount of magnetic Fe3O4 NPs in/on the membranes. The present electrospun magnetic nanofibrous membrane may be a potential candidate as a novel heat-generating substrate for localized hyperthermia cancer therapy.  相似文献   

9.
Ferrofluid containing highly conductive polyaniline (PANI) was prepared, in which soluble PANI solutions dopedwith 10-camphorsulfonic acid (CSA) and dodecyl benzenesulfonic acid (DBSA) were used as the basic solution and Fe_3O_4nanoparticles (d = 10 nm) as the magnetic material. Moreover, the freestanding films of the resulting ferrofluid can beobtained by an evaporation method. The electrical and magnetic properties of the ferrofluid or its films can be adjustedthrough changing the content of PANI and Fe_3O_4. High saturated magnetization (≈ 30 emu/g) and high conductivity(≈ 250 S/cm) of the composite films can be achieved when the composite film contains 26.6 wt% of Fe_3O_4. In particular, itwas found that the composite films exhibit a super-paramagnetic behavior (Hc = 0) attributed to the size of Fe_3O_4 particles on the nanometer scale.  相似文献   

10.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40 nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83 A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

11.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

12.
With an average diameter of 100-150 nm, composite nanotubes of polyaniline (PANI)/multiwalled carbon nanotubes (MWNTs) containing Fe3O4 nanoparticles (NPs) were synthesized by a two-step method. First, we synthesized monodispersed Fe3O4 NPs (d=17.6 nm, σ=1.92 nm) on the surface of MWNTs and then decorated the nanocomposites with a PANI layer via a self-assembly method. SEM and TEM images indicated that the obtained samples had the morphologies of nanotubes. The molecular structure and composition of MWNTs/Fe3O4 NPs/PANI nanotubes were characterized by Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectrometry (EDX), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and Raman spectra. UV-vis spectra confirmed the existence of PANI and its response to acid and alkali. As a multifunctional material, the conductivity and magnetic properties of MWNTs/Fe3O4 NPs/PANI composites nanotubes were also investigated.  相似文献   

13.
Magnetic silica‐coated magnetite (Fe3O4) sub‐microspheres with immobilized metal‐affinity ligands are prepared for protein adsorption. First, magnetite sub‐microspheres were synthesized by a hydrothermal method. Then silica was coated on the surface of Fe3O4 particles using a sol–gel method to obtain magnetic silica sub‐microspheres with core‐shell morphology. Next, the trichloro(4‐chloromethylphenyl) silane was immobilized on them, reacted with iminodiacetic acid (IDA), and charged with Cu2+. The obtained magnetic silica sub‐microspheres with immobilized Cu2+ were applied for the absorption of bovine hemoglobin (BHb) and the removal of BHb from bovine blood. The size, morphology, and magnetic properties of the resulting magnetic micro(nano) spheres were investigated by using scanning microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and a vibrating sample magnetometer (VSM). The measurements showed that the magnetic sub‐microspheres are spherical in shape, very uniform in size with a core‐shell, and are almost superparamagnetic. The saturation magnetization of silica‐coated magnetite (Fe3O4) sub‐microspheres reached about 33 emu g?1. Protein adsorption results showed that the sub‐microspheres had a high adsorption capacity for BHb (418.6 mg g?1), low nonspecific adsorption, and good removal of BHb from bovine blood. This opens a novel route for future applications in removing abundant proteins in proteomic analysis.  相似文献   

14.
Fe3O4 particle-chain microwires are firstly synthesized under magnetic field by a simple coprecipitation method. The increase of magnetic field caused the lengthening of the wires, and doubled densities of starting solution lead to a halved diameter. It was supposed that the magnetic field gradient and the particular growing process of particles are the main factors of the formation of these microwires. Magnetic hysteresis curves of Fe3O4 microwires were also measured.  相似文献   

15.
One‐pot synthesis of thermoresponsive magnetic composite microspheres with a poly(N‐isopropylacrylamide) (PNIPAM) shell and a Fe3O4 core is demonstrated. Temperature sensitivity of PNIPAM was adopted to design the novel synthesis pathway. The as‐prepared composite microspheres have an obvious core‐shell structure with a mean size of approximately 250 nm. The Fe3O4 core is approximately 5 nm and the thickness of the PNIPAM shell is approximately 10 nm. The content of Fe3O4 in the composite microspheres can be controlled by this method. The composite microspheres experience a swelling and shrinking process in water by adjusting the temperature below and above the lower critical solution temperature (LCST) around 32 °C. These microspheres also show fine response to an external magnetic field. This work presents a platform to synthesize organic/inorganic composite microspheres in a facile and efficient approach. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2702–2708  相似文献   

16.
《Solid State Sciences》2012,14(10):1550-1556
The thermal decomposition approach, reverse micro-emulsion system and surface modification technique had been successfully used to synthesis single magnetic core Fe3O4@Organic Layer@SiO2–NH2 complex microspheres. The magnetization of the magnetic microspheres core could be easily tuned between 28 and 56 emu/g by adjusting the amount of 2-mercaptobarbituric acid. It was found that the Organic Layer to some extent had a protective effect on avoiding Fe3O4 being oxidized into Fe2O3. Each Fe3O4@Organic Layer microsphere could be coated uniformly by about 30 nm of silica shell. The average diameter of the Fe3O4@Organic Layer@SiO2 composites was about 538 nm. The saturation magnetization of the Fe3O4@Organic Layer@SiO2 complex microspheres was 12.5% less than magnetic microspheres cores. The Fe3O4@Organic Layer@SiO2–NH2 composites possessed a huge application potentiality in specificity enriching and separating biological samples.  相似文献   

17.
Fe3O4/ZIF‐8 nanoparticles were synthesized through a room‐temperature reaction between 2‐methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as‐prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m2g?1). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF‐8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity.  相似文献   

18.
Considering the application potentials of organic materials possessing both conducting and ferromagnetic functions in various electronic devices, an attempt was made to prepare conducting polyaniline (PANI) layered magnetic nano composite polymer particles. Two routes were used to modify magnetic Fe3O4 core particles. In one route, seeded emulsion polymerization of methyl methacrylate (MMA) was carried out in presence of nano‐sized Fe3O4 core particles. In another route, cross‐linker ethyleneglycol dimethacrylate (EGDM) was used in addition to MMA. The modified composite particles were named as Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM), respectively. Finally, seeded chemical oxidative polymerization of aniline was carried out in the presence of Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM) composite seed particles to obtain Fe3O4/PMMA/PANI and Fe3O4/P(MMA‐EGDM)/PANI composite polymer particles. The modification of Fe3O4 core particles was confirmed by electron micrographs, FTIR, UV–visible spectra, X‐ray photoelectron spectra, X‐ray diffraction pattern and thermogravimetric analyses. A comparative study showed that crosslinking of intermediate shell improved the magnetic susceptibility and electrical conductivity of PANI layered magnetic nano composite particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
免疫磁性纳米微球的制备与表征   总被引:1,自引:0,他引:1  
王斌 《化学通报》2015,78(9):847-850
成功制备了Fe3O4磁性纳米颗粒及二甲基丙烯酸乙二醇酯-甲基丙烯酸(EGDMA-MAA)共聚物包覆的Fe3O4磁性复合微球。将吲哚美辛抗体固定在复合微球表面,形成了Fe3O4(核)/聚合物-抗体(壳)的复合免疫磁性颗粒。XRD结果表明,制备的Fe3O4的晶型为反立方尖晶石型且纯度较高;TEM表征表明Fe3O4粒径较为均匀,平均粒径为12nm;磁性复合微球的平均直径为460nm。制备的Fe3O4磁性纳米颗粒和磁性复合微球有较强的磁响应强度,其饱和磁化率分别为49.16和8.38emu/g,能够满足磁性分离的要求。FT IR验证了磁性复合微球中羧基特征峰的存在,表明羧基成功连接在磁性微球上面。通过碳二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)活化法将微球表面羧基活化并成功与抗吲哚美辛抗体交联。  相似文献   

20.
Au nanoparticles (Au NPs) play a vital role in heterogeneous catalytic reactions. However, pristine Au NPs usually suffer from poor selectivity and difficult recyclability. In this work, Fe3O4‐Au@CeO2 hybrid nanofibers were prepared via a simple one‐pot redox reaction between HAuCl4 and Ce (NO3)3 in the presence of Fe3O4 nanofibers. CeO2 shell was uniformly coated on the surface of Fe3O4 nanofibers to form a unique core‐shell structure, while Au NPs were encapsulated inside the CeO2 shell. The as‐prepared Fe3O4‐Au@CeO2 hybrid nanofibers have been proved to be positively surface charged due to the formation of CeO2 shell, enabling them to be good candidates for predominant selective catalytic activity towards the degradation of negatively charged organic dyes. In addition, the Fe3O4‐Au@CeO2 hybrid nanofibers showed magnetic properties, offering them excellent recyclable usability. This work presents a facile and effective solution to prepare magnetic noble metal/metal oxide hybrid nanomaterials with unique chemical structure and surface characteristic for promising applications in heterogeneous catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号