首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Light-emitting diodes (LEDs) can be easily and inexpensively integrated into modern light microscopes. There are numerous advantages of LEDs as illumination sources; most notably, they provide brightness and spectral control. We demonstrate that for transmitted light imaging, an LED can replace the traditional tungsten filament bulb while offering longer life; no color temperature change with intensity change; reduced emission in the infrared region, which is important for live cell imaging; and reduced cost of ownership. We show a direct substitution of the typical tungsten bulb with a commercially available LED and demonstrated the color stability by imaging a histology section over a wide range of light intensities. For fluorescent imaging, where the typical illumination sources are mercury or xenon lamps, we demonstrate that LEDs offer advantages of providing a longer lifespan, having a more constant intensity output over time, more homogeneous illumination, and significantly lower photon dose. Our LED equipped system was used to image and deconvolve dual fluorescently labeled cells, as well as image cells undergoing mitosis expressing green fluorescent protein-histone 2B complex. The timing of the stages of mitosis is well established as an indicator of cell viability.  相似文献   

2.
3.
The effect of photodynamic action on plasma membranes was examined using a fluorescent potentiometric indicator [di-SBA-C2(3)] to measure alterations in the plasma membrane potential of mouse myeloma cells treated with zinc phthalocyanine sulfonate and light. Plasma membrane depolarization was observed to be an early event in photodynamic action, showing both photosensitizer concentration and light dose dependence. Depolarization occurred while membrane integrity was retained and appears to be an early event preceding cell death.  相似文献   

4.
We have developed complexes of CdS nanorods capped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H(+) to H(2) at a CaI turnover frequency of 380-900 s(-1) and photon conversion efficiencies of up to 20% under illumination at 405 nm. In this paper, we focus on the compositional and mechanistic aspects of CdS:CaI complexes that control the photochemical conversion of solar energy into H(2). Self-assembly of CdS with CaI was driven by electrostatics, demonstrated as the inhibition of ferredoxin-mediated H(2) evolution by CaI. Production of H(2) by CdS:CaI was observed only under illumination and only in the presence of a sacrificial donor. We explored the effects of the CdS:CaI molar ratio, sacrificial donor concentration, and light intensity on photocatalytic H(2) production, which were interpreted on the basis of contributions to electron transfer, hole transfer, or rate of photon absorption, respectively. Each parameter was found to have pronounced effects on the CdS:CaI photocatalytic activity. Specifically, we found that under 405 nm light at an intensity equivalent to total AM 1.5 solar flux, H(2) production was limited by the rate of photon absorption (~1 ms(-1)) and not by the turnover of CaI. Complexes were capable of H(2) production for up to 4 h with a total turnover number of 10(6) before photocatalytic activity was lost. This loss correlated with inactivation of CaI, resulting from the photo-oxidation of the CdS capping ligand MPA.  相似文献   

5.
Real‐time imaging of cell‐surface‐associated proteolytic enzymes is critical to better understand their performances in both physiological and pathological processes. However, most current approaches are limited by their complexity and poor membrane‐anchoring properties. Herein, we have designed and synthesized a unique small‐molecule fluorescent probe, which combines the principles of passive exogenous membrane insertion and Förster resonance energy transfer (FRET) to image cell‐surface‐localized furin‐like convertase activities. The membrane‐associated furin‐like enzymatic cleavage of the peptide probe leads to an increased fluorescence intensity which was mainly localized on the plasma membrane of the furin‐expressed cells. This small‐molecule fluorescent probe may serve as a unique and reliable reporter for real‐time visualization of endogenous cell‐surfaceassociated proteolytic furin‐like enzyme functions in live cells and tissues using one‐photon and two‐photon microscopy.  相似文献   

6.
Algal growth requires optimal irradiance. In photobioreactors, optimal light requirements change during the growth cycle. At low culture densities, a high incident light intensity can cause photoinhibition, and in dense algal cultures, light penetration may be limited. Insufficient light supply in concentrated algae suspensions can create zones of dissimilar photon flux density inside the reactor, which can cause suboptimal algal growth. However, growth of dense cultures can also be impaired due to photoinhibition if cells are exposed to excessively high light intensities. In order to simultaneously maintain optimal growth and photon use efficiency, strategies for light supply must be based on cell concentrations in the culture. In this study, a lipid-producing microalgal strain, Neochloris oleoabundans, was grown in batch photobioreactors. Growth rates and biomass concentrations of cultures exposed to constant light were measured and compared with the growth kinetic parameters of cultures grown using sequentially increasing light intensities based on increasing culture densities during batch growth. Our results show that reactors operated under conditions of sequential increase in irradiance levels yield up to a 2-fold higher biomass concentration when compared with reactors grown under constant light without negatively impacting growth rates. In addition, this tailored light supply results in less overall photon use per unit mass of generated cells.  相似文献   

7.
G-protein-coupled receptors (GPCRs) are ubiquitous mediators of signal transduction across cell membranes and constitute a very important class of therapeutic targets. In order to study the complex biochemical signaling network coupling to the intracellular side of GPCRs, it is necessary to engineer and control the downstream signaling components, which is difficult to realize in living cells. We have developed a bioanalytical platform enabling the study of GPCRs in their native membrane transferred inside-out from live cells to lectin-coated beads, with both membrane sides of the receptor being accessible for molecular interactions. Using heterologously expressed adenosine A(2A) receptor carrying a yellow fluorescent protein, we showed that the tethered membranes comprised fully functional receptors in terms of ligand and G protein binding. The interactions between the different signaling partners during the formation and subsequent dissociation of the ternary signaling complex on single beads could be observed in real time using multicolor fluorescence microscopy. This approach of tethering inside-out native membranes accessible from both sides is straightforward and readily applied to other transmembrane proteins. It represents a generic platform suitable for ensemble as well as single-molecule measurements to investigate signaling processes at plasma membranes.  相似文献   

8.
We developed a highly efficient system for light‐induced protein dimerization in live cells using photo‐caged derivatives of the phytohormone gibberellic acid (GA3). We demonstrate the application of the photo‐activatable chemical inducer of dimerization (CID) for the control of protein translocation with high spatiotemporal precision using light as an external trigger. Furthermore, we present a new two‐photon (2P)‐sensitive caging group, whose exceptionally high two‐photon cross section allows the use of infrared light to efficiently unleash the active GA3 for inducing protein dimerization in living cells.  相似文献   

9.
10.
Adsorption of proteins and the effect of the chemical nature of membrane surfaces on protein adsorption were investigated using14C-tagged albumin and several microporous membranes (polyvinilydene fluoride, PVDF; nylon; polypropylene, PP; and polycarbonate, PC). The membrane surfaces were modified by exposing them to low-temperature plasma of several different monomers (n-butane, oxygen, nitrogen alone or as mixtures) in a radiofrequency plasma reactor. Transients in the permeability of albumin solutions through the membranes and changes in flux of distilled water through the membranes before and after adsorption of albumin were used to investigate the role of protein adsorption on membrane fouling. The results show that the extent of adsorption of albumin on hydrophobic membranes was considerably more than that on hydrophilic membranes. The hydrophilic membranes were susceptible to electrostatic interactions and less prone to fouling. A pore-blocking model was successfully used to correlate the loss of water flux through pores of defined geometry  相似文献   

11.
In this study, molecular dynamics simulation is used to investigate the effects of water-based substitutional defects in zeolitic imidazolate frameworks (ZIF)-8 membranes on their reverse osmosis (RO) desalination performance. ZIF-8 unit cells containing up to three defect sites are used to construct the membranes. These substitutional defects can either be Zn defects or linker defects. The RO desalination performance of the membranes is assessed in terms of the water flux and ion rejection rate. The effects of defects on the interactions between the ZIF-8 membranes and NaCl are investigated and explained with respect to the radial distribution function (RDF) and ion density distribution. The results show that ion adsorption on the membranes occurs at either the nitrogen atoms or the defect sites. Complete NaCl rejection can be achieved by introducing defects to change the size of the pores. It has also been discovered that the presence of linker defects increases membrane hydrophilicity. Overall, molecular dynamics simulations have been used in this study to show that water-based substitutional defects in a ZIF-8 structure reduce the water flux and influence its hydrophilicity and ion adsorption performance, which is useful in predicting the type and number of defect sites per unit cell required for RO applications. Of the seven ZIF-8 structures tested, pristine ZIF-8 exhibits the best RO desalination performance.  相似文献   

12.
13.
Characteristic differences in the light intensity curves of photosynthesis after growth of cells of Acetabularia mediterranea Lamour. (A. acetabulum (L.) Silva) in weak and strong white light were similar to those for red and blue light-treated cells, respectively. This indicated that responses to white light quantity and those to light quality might be causally related. Small differences in the thylakoid polypeptide composition of cells grown in high and low intensities of white light were not significant and thus did not help to clarify whether the adaptations to blue or red light, respectively, were the same. When the red to blue-light ratio was varied, keeping the total photon fluence rate constant, the photosynthetic capacity (red light saturated O2-production) was dependent on blue light irradiance in a logarithmic fashion. The specific influence of red light was not detectable, indicating that only blue light was effective for light irradiance adaptation in Acetabularia. The situation was different, at least for a transient period, when adaptation to light irradiance was allowed to proceed from a low photosynthetic activity after preirradiation of the cells with prolonged red light. The effect of low white light irradiances was pronounced, causing a maximum increase of photosynthetic activity within 3 days. The response to blue light was enhanced as well, and a very low photon irradiance added to continuous red light caused a change of the same order as that produced by high irradiances of blue light alone. This elevated action of low intensity white and blue light is most likely due to increased metabolite supply derived from the degradation of starch enhanced by this light quality. Therefore, photosynthetic effectiveness in Acetabularia is regulated by the irradiance of blue light and by feedback via photosynthetic products.  相似文献   

14.
Upon light irradiation, Fluorophore–cell‐penetrating peptide (Fl‐CPP) conjugates can disrupt the integrity of biological membranes. This activity can in turn be used to photoinduce the disruption of endocytic organelles and promote the delivery of entrapped macromolecules such as proteins or RNAs into live cells. Recent mechanistic studies have shown that ROS production by the fluorophore and a latent lytic ability of CPPs act in synergy to elicit photolysis. However, how the structure of fluorophore‐CPP conjugates impacts this synergistic activity remains unclear. Herein, using red blood cells (RBCs) as a model of biological membranes, we show that the number of arginine residues in a CPP as well as the position of fluorophore with respect to the CPP dramatically affect the photolytic activity of a fluorophore‐CPP conjugate. These factors should therefore be considered for the development of effective photoinducible delivery agents.  相似文献   

15.
A solution of 1,2,4,5-tetracyanobenzene (TCNB) in 2-methyltetrahehydrofuran (MTHF), in which a solute—solvent electron donor—acceptor (EDA) complex is formed, has been photoirradiated by 350–400 nm light at 77 K so as to excite only benzophenone. The intensity dependence of the exciting UV light on the photoinduced radical-anion formation of TCNB has been studied by means of optical absorption, suggesting a sensitized biphotonic ionic dissociation of the EDA complex.  相似文献   

16.
The rate of photochemical reaction in solutions of luminescent platinum(II) complex with 8-quinolinol was studied in relation to the type of solvent, irradiation time, photon energy and intensity of a luminous flux, concentration of the complex, and presence of oxygen. The structure of the photochemical reaction product was studied by X-ray photoelectron, IR, and electronic absorption spectroscopy. The quantitative kinetic parameters and quantum yield of the photochemical reaction performed under various irradiation conditions are reported.  相似文献   

17.
The alga Chlamydomonas nivalis lives in a high-light, cold environment: persistent alpine snowfields. Since the algae in snow receive light from all angles, the photon fluence rate is the critical parameter for photosynthesis, but it is rarely measured. We measured photon irradiance and photon fluence rate in the snow that contained blooms of C. nivalis. On a cloudless day the photon fluence rate at the snow surface was nearly twice the photon irradiance, and it can be many times greater than the photon irradiance when the solar angle is low or the light is diffuse. Beneath the surface the photon fluence rate can be five times the photon irradiance. Photon irradiance and photon fluence rate declined exponentially with depth, approximating the Bouguer-Lambert relationship. We used an integrating sphere to measure the spectral characteristics of a monolayer of cells and microscopic techniques to examine the spectral characteristics of individual cells. Astaxanthin blocked blue light and unknown absorbers blocked UV radiation; the penetration of these wavelengths through whole cells was negligible. We extracted astaxanthin, measured absorbance on a per-cell basis and estimated that the layer of astaxanthin within cells would allow only a small percentage of the blue light to reach the chloroplast, potentially protecting the chloroplast from excessive light.  相似文献   

18.
We examined the deep UV 229 nm photochemistry of NaNO(3) in solution and in the solid state. In aqueous solution excitation within the deep UV NO(3)ˉ strong π → π* transition causes the photochemical reaction NO(3)ˉ → NO(2)ˉ + O·. We used UV resonance Raman spectroscopy to examine the photon dose dependence of the NO(2)ˉ band intensities and measure a photochemical quantum yield of 0.04 at pH 6.5. We also examined the response of solid NaNO(3) samples to 229 nm excitation and also observe formation of NO(2)ˉ. The quantum yield is much smaller at ~10(-8). The solid state NaNO(3) photochemistry phenomena appear complex by showing a significant dependence on the UV excitation flux and dose. At low flux/dose conditions NO(2)ˉ resonance Raman bands appear, accompanied by perturbed NO(3)ˉ bands, indicating stress in the NaNO(3) lattice. Higher flux/dose conditions show less lattice perturbation but SEM shows surface eruptions that alleviate the stress induced by the photochemistry. Higher flux/dose measurements cause cratering and destruction of the NaNO(3) surface as the surface layers are converted to NO(2)ˉ. Modest laser excitation UV beams excavate surface layers in the solid NaNO(3) samples. At the lowest incident fluxes a pressure buildup competes with effusion to reach a steady state giving rise to perturbed NO(3)ˉ bands. Increased fluxes result in pressures that cause the sample to erupt, relieving the pressure.  相似文献   

19.
The effects of ultraviolet-B (UV-B) radiation on plasma membrane of water plant (Elodea canadensis, Vallisneria spiralis) cells were investigated by using microelectrode methods. A fast and reversible depolarization of membrane potential occurs initially during exposure of leaf cells to UV on a white light background, after which a slow phase of depolarization sets in. On action series, UV is pulsed for 15 s, with dark interval of 3 min, no monotonous response of systems on the UV excitation is observed. The action spectrum of the fast UV response lies in the interval of 300-330 nm and that of the slow phase-in the interval of 280-300 nm. The input impedance of membranes remains unchanged during the period of exposure. It is concluded that the H(+)-extruding complex of plant cell plasma membranes really consists of two types of interrelated electronic H(+)-pumps: an H(+)-pump of redox-active nature and the H(+)-pump of the H(+)-ATPase enzyme complex. Clearly, during the exposure of leaf cells to UV light, initially, the H(+)-pump of redox-active nature and then H(+)-ATPase are inhibited. It is proposed that the initial chromophore of UV-B light on plasma membrane can be one of the components of H(+)-pump of redox-active nature. It is probably the molecular of quinone.  相似文献   

20.
The purpose of the study was to determine the distribution of the photosensitizer toluidine blue O (TBO) within Porphyromonas gingivalis and the possible mechanism(s) involved in the lethal photosensitization of this organism. The distribution of TBO was determined by incubating P. gingivalis with tritiated TBO (3H-TBO) and fractionating the cells into outer membrane (OM), plasma membrane (PM), cytoplasmic proteins, other cytoplasmic constituents and DNA. The percentage of TBO in each of the fractions was found to be, 86.7, 5.4, 1.9, 5.7 and 0.3%, respectively. The involvement of cytotoxic species in the lethal photosensitization induced by light from a helium-neon (HeNe) laser and TBO was investigated by using deuterium oxide (D2O), which prolongs the lifetime of singlet oxygen, and the free radical and singlet oxygen scavenger L-tryptophan. There were 9.0 log10 and 2 log10 reductions in the presence of D2O and H2O (saline solutions), respectively, at a light dose of 0.44 J (energy density = 0.22 J/cm2), suggesting the involvement of singlet oxygen. Decreased kills were attained in the presence of increasing concentrations of L-tryptophan. The effect of lethal photosensitization on whole cell proteins was determined by measuring tryptophan fluorescence, which decreased by 30% using 4.3 J (energy density = 4.3 J/ cm2) of light. Effects on the OM and PM proteins were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. There was evidence of change in the molecular masses of several PM proteins and OM proteins compared to controls. There was evidence of damage to the DNA obtained from irradiated cells. Scanning electron microscopic studies showed that there was coaggre-gation of P. gingivalis cells when sensitized and then exposed to laser light. These results suggest that lethal photosensitization of P. gingivalis may involve changes in OM and/or PM proteins and DNA damage mediated by singlet oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号