首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
What is “Molybdic Acid” or “Polymolybdic Acid”? According to a comparative study of the literature, supplemented by well-aimed experimental investigations and equilibrium calculations, the terms “molybdic acid” or “polymolybdic acid”, used for many substances, species, or solutions in the literature, are applicable to a species, a solution, and two solids:
  • a) The monomeric molybdic acid, most probably having the formula MoO2(OH)2(H2O)2(? H2MoO4, aq), exists in (aqueous) solution only and never exceeds a concentration of ≈ 10?3 M since at higher concentrations it reacts with other monomemeric molybdenum (VI) species to give anionic or cationic polymers.
  • b) A concentrated (>0.1 M MoVI) aqueous molybdate solution of degree of acidification P = 2 (realized, e. g., by a solution of one of the MoVI oxides; by any molybdate solutions whose cations have been exchanged by H3O+ on a cation exchanger; by suitable acidification of a molybdate solution) contains 8 H3O+ and the well-known polyanion Mo36O112(H2O)168? exactly in the stoichiometric proportions.
  • c) A glassy substance, obtained from an alkali metal salt-free solution prepared according to (b), refers to the compound (H3O)8[Mo36O112(H2O)16]·xH2O, x = 25—29.
  • d) A solid having the ideal composition [(H3O)Mo5O15(OH)H2O·H2O]∞ consists of a polymolybdate skeleton (the well-known ?decamolybdate”? structure), in the tunnels of which H3O+ and H2O are intercalate. The structure is very unstable if only H3O+ cations are present, but it is enormously stabilized by a partial exchange of H3O+ by certain alkali or alkaline earth metal cations.
For the compounds MoO3, MoO3·H2O, and MoO3·2H2O the term ?molybdic acid”? is unjustified. The commercial product ?molybdic acid, ≈85% MoO3”? is the well-known polymolybdate (NH4)2O·4 MoO3 with a layer structure of the polyanion.  相似文献   

2.
Common polyatomic ions (ArO+, NO+, H2O+, H3O+, Ar2+, ArN+, OH+, ArH+, O2+) in inductively coupled plasma-mass spectrometry (ICP-MS) are identified using high mass resolution and studied using kinetic gas temperatures (Tgas) determined from a dissociation reaction approach. Methods for making accurate mass measurements, confirming ion identifications, and correcting for mass bias are discussed. The effects of sampler and skimmer cone composition and extraction voltage on polyatomic ion formation are also explored. Neutral species densities at several locations in the extraction interface are estimated and the corresponding effects of the Tgas value are calculated. The results provide information about the origins of background ions and indicate possible locations for their formation or removal.  相似文献   

3.
The aim of this study is to investigate the influence of some monovalent counter-ions (NH4 +, K+ and Cs+) on thermal behavior of polyoxometalates derived from H3PMo12O40 (HPM) and H4PVMo11O40 (HPVM) by replacing the protons. The IR and UV-VIS-DRS spectra of some acid and neutral NH4 +, K+, Cs+ salts, which derived from HPM and HPVM, confirmed the preservation of Keggin units (KU) structure. The X-ray diffraction spectra clearly showed the presence of a cubic structure. The non-isothermal decomposition of studied polyoxometalates proceeds by a series of processes: the loss of crystallization water; the loss of O2 accompanying with a reduction of V5+→V4+ and Mo6+→Mo5+; the loss of constitution water started at 360°C for HPVM salts and 420°C for HPM salts; the decomposition of ammonium ion over 420°C with NH3, N2 and H2O elimination and simultaneous processes of reduction (V5+→ V4+ and Mo6+→ Mo5+ or Mo4+) associating with endothermic effects; reoxidation of Mo5+, Mo4+ and V4+with a strong exothermic effect; destruction of KU to the oxides: P2O5, MoO3 and V2O5 and the crystallization of MoO3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A series of MoO3/ZrO2–Al2O3 catalysts was prepared and investigated in the sulfur-resistant methanation aimed at production of synthetic natural gas. Different methods including impregnation, deposition precipitation, and co-precipitation were used for preparing ZrO2–Al2O3 composite supports. These composite supports and their corresponding Mo-based catalysts were investigated in the sulfur-resistant methanation, and characterized by N2 adsorption–desorption, XRD and H2-TPR. The results indicated that adding ZrO2 promoted MoO3dispersion and decreased the interaction between Mo species and support in the MoO3/ZrO2–Al2O3 catalysts. The co-precipitation method was favorable for obtaining smaller ZrO2 particle size and improving textural properties of support, such as better MoO3 dispersion and increased concentration of Mo6+ species in octahedral coordination to oxygen. It was found that the MoO3/ZrO2–Al2O3 catalyst with ZrO2Al2O3 composite support prepared by co-precipitation method exhibited the best catalytic activity. The ZrO2 content in the ZrO2Al2O3 composite support was further optimized. The MoO3/ZrO2–Al2O3 with 15 wt % ZrO2 loading exhibited the highest sulfur-resistant CO methanation activity, and excess ZrO2 reduced the specific surface area and enhanced the interaction between Mo species and support. The N2 adsorption-desorption results indicated that the presence of ZrO2 in excessive amounts decreased the specific surface area since some amounts of ZrO2 form aggregates on the surface of the support. The XRD and H2-TPR results showed that with the increasing ZrO2 content, ZrO2 particle size increased. These led to the formation of coordinated tetrahedrally Mo6+(T) species and crystalline MoO3, and this development was unfavorable for improving the sulfur-resistant methanation performance of MoO3/ZrO2–Al2O3 catalyst.  相似文献   

5.
The dissociation state of the solutes M2MoO4, M2Mo3O10, M2Mo4O13, M2Mo5O16 (MRb or Cs), Na2CrO4·MoO3, K2CrO4·2 MoO3, Cr2Mo3O12 and V2MoO8 was studied cryoscopically in molten K2 Cr2O7 and KNO3 solvents. The freezing point depression, ΔT, of the solvents was obtained by measuring the cooling curves of the binary salt mixtures over unlimited range of solute concentration. The number of foreign ions obtained ν, showed that the solutes were either simply dissociated in the melt into the probable stable species (MoO4)2?, (Mo3O10)2?, (Mo4O13)2? and (Mo5O16)2? or, in some cases after reactions and rearrangements, into (CrMo2O10)2? heteropolyions. The solute V2MoO8, on the other hand, was found to dissolve without any apparent dissociation. An agreement between the experimental and calculated values of activity, a, based on the Temkin and Random Mixing models and that of Van't Hoff's equation support the proposed simple dissocia- tion scheme for K2Cr2O7Cs2MoO4 system.  相似文献   

6.
The presence of water in the discharge cell is a serious problem in glow discharge mass spectrometry. Even very small quantities of water can make considerable changes in the composition and electrical parameters of the plasma, which lead to a decrease in the signal intensity and the appearance of various cluster components. This results in a very complicated mass spectrum and significantly deteriorates the analytical performance of the method. Different approaches to solving the this problem are discussed in the paper. A multiple position interface that allows analyzing 6–10 samples without decapsulation of the discharge cell is presented in this work. It is also shown that the use of a tantalum auxiliary cathode ensures a several-order depression of the interfering components (OH+, OH 2 + , OH 3 + , 12C1H 2 + , 16O+, 12C1H 3 + ) because of its getter behavior. The simultaneous application of all proposed approaches ensures solving the problem of interferences in the combined hollow cathode with pulsed glow discharge to the great extent.  相似文献   

7.
Thermal studies on various oxalato complexes have been of immense interest as they yield finely divided, highly reactive oxides which are usually obtained at a much lower temperature than that required in the conventional method of preparation, i.e., heating a mixture of two or more constituents [1]. A survey of the literature reveals that the compounds having the general formula A2[Mo2O5(C2O4)2(H2O)2], where A = K+, NH+4[2] and A = Cs+ [3], have been prepared and their thermal decomposition is studied, but no such information is available regarding the preparation and characterisation of Na2[Mo2O5(C2O4)2(H2O)2] (SMO), which forms the subject of study of this paper. Sodium dimolybdate (Na2Mo2O7), the decomposition product of SMO, is obtained at 280°C, a temperature much lower than that required in the conventional method of preparation of heating a mixture of Na2MoO4 and MoO3 [4].  相似文献   

8.
An inductively coupled plasma quadrupole mass spectrometer equipped with an octopole collision/reaction cell was used for the determination of cadmium in oyster tissue samples using isotope dilution inductively coupled plasma mass spectrometry. The oyster samples in question were found to contain Mo and Zr. In our feasibility study on a Cd standard solution (10 μg L−1) containing a matrix of Mo (1000 μg L−1) or Zr (250 μg L−1), the potentially interfering species (MoO+ or ZrO+) present at the analytical mass of cadmium concerned (m/z 111, 112 or 114) was reduced effectively through the use of a mixture of He and H2 as cell gases. The accuracy of the method was validated by the analysis of a matrix-matched certified reference material (CRM) of NIST SRM 1566b. The CRM was analyzed under the standard and He/H2 cell modes. Two isotopic pairs of 114Cd/111Cd and 112Cd/111Cd were selected for quantification purposes. The recoveries of cadmium obtained in the two cell modes were compared with each other. The validated method was applied successfully to the APMP.QM-P5 pilot study for international comparability purposes.  相似文献   

9.
The title compound, {(C12H13N2)2[Mo5O16]}n, was synthesized under hydro­thermal conditions. The structure contains a two‐dimensional layer, constructed from [(Mo4O14)n]4n chains linked through MoO6 octahedra, which lie across twofold axes. The [(Mo4O14)n]4n chain consists of [Mo4O14]4− clusters connected to one another by sharing their MoO5 square‐pyramidal and MoO6 octahedral vertices in an anti disposition. The layers are linked by the cation, to which they are connected via N—H⋯O hydrogen bonds.  相似文献   

10.
Unique properties of the two giant wheel‐shaped molybdenum‐oxides of the type {Mo154}≡[{Mo2}{Mo8}{Mo1}]14 ( 1 ) and {Mo176}≡[{Mo2}{Mo8}{Mo1}]16 ( 2 ) that have the same building blocks either 14 or 16 times, respectively, are considered and show a “chemical adaptability” as a new phenomenon regarding the integration of a large number of appropriate cations and anions, for example, in form of the large “salt‐like” {M(SO4)}16 rings (M=K+, NH4+), while the two resulting {Mo146 (K(SO4))16} ( 3 ) and {Mo146 (NH4(SO4))16} ( 4 ) type hybrid compounds have the same shape as the parent ring structures. The chemical adaptability, which also allows the integration of anions and cations even at the same positions in the {Mo4O6}‐type units of 1 and 2 , is caused by easy changes in constitution by reorganisation and simultaneous release of (some) building blocks (one example: two opposite orientations of the same functional groups, that is, of H2O{Mo?O} ( I ) and O?{Mo(H2O)} ( II ) are possible). Whereas Cu2+ in [(H4CuII5)MoV28MoVI114O432(H2O)58]26? ( 5 a ) is simply coordinated to two parent O2? ions of {Mo4O6} and to two fragments of type II , the SO42? integration in 3 and 4 occurs through the substitution of two oxo ligands of {Mo4O6} as well as two H2O ligands of fragment I . Complexes 3 and now 4 were characterised by different physical methods, for example, solutions of 4 in DMSO with sophisticated NMR spectroscopy (EXSY, DOSY and HSQC). The NH4+ ions integrated in the cluster anion of 4 “communicate” with those in solution in the sense that the related H+ ion exchange is in equilibrium. The important message: the reported “chemical adaptability” has its formal counterpart in solutions of “molybdates”, which can form unique dynamic libraries containing constituents/building blocks that may form and break reversibly and can lead to the isolation of a variety of giant clusters with unusual properties.  相似文献   

11.
MALDI-TOF was used to study molybdenum dioxide (MoO2) containing a nanosized fraction. The composition of cationic clusters of nonstoichiometric lower molybdenum oxides in the gas phase was determined, and the thermodynamic stabilities and configurations of isomers were calculated for selected symmetric molecular structures and for cations MoSO 8 + and Mo5O 9 + . Molecular orbital analysis was performed for two trigonal-bipyramidal clusters Mo5O8 and Mo5O9. Changes in molybdenum–molybdenum interatomic distances in going from MoO 8 + and Mo5O 9 + cations to neutral clusters are discussed.  相似文献   

12.
New pH- and sodium ion-sensitive metal-oxide-type sensors have been developed and tested with a direct solid state contact method. Performance was demonstrated at ambient temperature with single crystals of several molybdenum bronzes (i.e. Na0.9Mo6O17, Li0.9Mo6O17, Li0.33MoO3 and K0.3MoO3). The pH sensors with Na-molybdenum-oxide bronzes show near ideal Nernstian behavior in the pH range 3–9. The response is not affected by the direction of the pH change. The response time of most molybdenum bronze pH sensors is less than 5 s for 90% response. The sodium molybdenum bronze sensor responded reproducibly and fast to changes of Na+ concentration in the range 1–10–4 mol dm–3. Cross sensitivity tests to other ions such as H+ or K+ have shown that the new sodium ion sensor may be used when the concentration of other ions is an order of magnitude smaller than the Na+ concentration. pH sensors with single crystals of molybdenum oxide bronzes can be used to follow pH titrations. Electronic Publication  相似文献   

13.
《Polyhedron》1999,18(23):2971-2975
[Cu(phen)2]2[{Cu(phen)}2Mo8O26]·H2O has been synthesized from MoO3, H2MoO4, Cu(Ac)2·H2O and 1,10-phenanthroline in aqueous solution using the hydrothermal method and characterized by single-crystal X-ray structure analysis. The title compound consists of a centrometric β-octamolybdate-supported complex anion [{Cu(phen)}2Mo8O26]2−, two bis-phenanthroline Cu(I) cations, and one water molecule of crystallization.  相似文献   

14.
Here we report a quantitative comparison of sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and collision/reaction cell inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) for the detection of 90Sr, 137Cs, and 226Ra at ultra-trace levels. We observed that the identification and quantification of radioisotopes by ICP-MS were hampered by spectral (both isobaric and polyatomic ions) and non-spectral (matrix effect) interferences. ICP-QMS has been used to eliminate the isobaric 90Sr/90Zr interference through the addition of O2 into the collision cell as a reactant gas. Zr+ ions were subsequently converted into ZrO+, whereas Sr+ ions were not reactive. In addition, the isobaric interference of 137Ba on 137Cs was eliminated by the addition of N2O gas in the cell, which led to the formation of BaO+ and BaOH+ products, whereas Cs+ remained unreactive. Furthermore, He and H2 were used in the collision/reaction cell to eliminate polyatomic ions formed at m/z 226. A comparison of the results obtained by ICP-SFMS after a chemical separation of Sr from Zr and Cs from Ba was performed. Finally, to validate the developed analytical procedures, measurements of the same samples were performed by γ-ray spectroscopy.  相似文献   

15.
Two new organic–inorganic hybrid cobalt-molybdovanadates [Co(phen)3]H2[H2V2Mo6O26] · 7H2O (1) and [Co(2,2′-bipy)3][Na(H2O)7][VMo12O40] (2) have been hydrothermally synthesized and structurally characterized by elemental analyses, IR, UV, XPS spectroscopy, thermogravimetric (TG) analyses, and X-ray single crystal diffraction. The molecular structure of 1 consists of a [V2Mo6(OH)2O24]4? polyoxoanion, a [Co(phen)3]2+, two H+ and seven lattice water molecules. The structure of [V2Mo6(OH)2O24]4? consists of six MoO6 octahedra and two VO4 tetrahedra; six MoO6 octahedra are linked by edge-sharing oxygens forming a {Mo6} ring, and two VO4 tetrahedra cap opposite sides of the {Mo6} ring. The molecular structural unit of 2 is constructed from a typical Keggin-type [VMo12O40]3? polyoxoanion and a [Co(2,2′-bipy)3]2+ cation and a Na+ countercation; Co2+ is coordinated by six nitrogens from three 2,2′-bipyridines forming a distorted octahedron.  相似文献   

16.
In the far IR region at low molybdenum loadings, Mo-SiO2 catalysts present a pseudomolybdate or a polymolybdate species, while bulk-like MoO3 appears at loadings close to the geometrical monolayer coverage. W-SiO2 and V-SiO2 spectra show bands close to those observed on the corresponding bulk oxides.In the case of TiO2, Al2O3, ZrO2 supported catalysts, a band is observed near 1000 cm–1 which is assigned to the Mo=O stretching vibration of coordinatively unsaturated Mo n+ ions showing a stronger interaction with the support than one observed on silica.  相似文献   

17.
The influence of conditions of the preliminary thermal treatment of ZrO2, ammonia and methanol adsorption, and MoO3 supporting on O2 formation during the adsorption of an NO + O2 mixture was studied. The interaction of O2 with different molecules was studied. Adsorbed ammonia and methanol, as well as supported Mo6+ ions, were shown to inhibit this reaction. The involvement of the Zr4+ and O2– Lewis sites in the reaction was concluded. The interaction of ammonia and methanol with the O2 radical anions changed the g tensor parameters and decreased the thermal stability of O2 in the case of methanol. O2 radical anions were formed on the reduced (0.1–2.0)% MoO3/ZrO2 samples during the interaction of O2 with the Mo5+ ions in the octahedral configuration. As in the case of O2 formation during NO + O2 adsorption on ZrO2, the radical anions were localized in the coordination spheres of the coordinately unsaturated Zr4+ ions. A change in the MoO3 content of the samples from 0.1 to 0.5% led to an increase in the amount of O2 , whereas a change from 0.5 to 2.0% led to a decrease in the O2 amount due to the screening of the Zr4+ ions by oxo complexes and polymolybdates.  相似文献   

18.
Spectrophotometric studies have been used to determine the optimal formation conditions and stoichiometry of the reduced molybdoantimonylphosphoric acid. It was found that a [H+]/[MoO2-4] ratio of70± 10 was optimal for formation between 0.0008 and 0.01 M molybdenum. This corresponds to solution conditions that favor the existence of the dimeric form of molybdenum. The [H+]/[MoO2-4] criteria allows simple variation of experimental conditions. The stoichiometry of the reduced heteropoly acid was surmised to be PSb2Mo10O40 from spectral studies and elemental analysis.  相似文献   

19.
In the title mixed‐ligand metal–organic polymeric complex [Cd(C14H8O6S)(C16H16N2)(H2O)]n, the asymmetric unit contains a crystallographically unique CdII atom, one doubly deprotonated 4,4′‐sulfonyldibenzoic acid ligand (H2SDBA), one 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (TMPHEN) molecule and one water molecule. Each CdII centre is coordinated by two N atoms from the chelating TMPHEN ligand, three O atoms from monodentate carboxylate groups of three different SDBA2− ligands and one O atom from a coordinated water molecule, giving a distorted CdN2O4 octahedral geometry. Single‐crystal X‐ray diffraction analysis reveals that the compound is a one‐dimensional double‐chain polymer containing 28‐membered rings based on Cd2O2 clusters, with a Cd...Cd separation of 3.6889 (4) Å. These chains are linked by O—H...O and C—H...O hydrogen bonds to form a three‐dimensional supramolecular framework. The framework is reinforced by π–π and C—O...π interactions.  相似文献   

20.
An inductively coupled plasma quadrupole mass spectrometer equipped with a dynamic reaction cell™ (DRC) was successfully used for the accurate determination of B, Si, P and S in steel samples, using the reaction of Si+, P+ and S+ ions with O2 in the cell. The method obviated the effect of polyatomic isobaric interferences at m/z 28, 31 and 32 by detecting 28Si+, 31P+ and 32S+ as the oxide ion 28Si16OH, 31P16O and 32S16O at m/z 45, 47 and 48, respectively, which is less interfered. The effects of the operating conditions of DRC system were optimized to get the best signal to noise ratio for 28Si16OH, 31P16O and 32S16O. As there is no spectroscopic interference, boron was determined under the standard mode. Validation of the method was carried out by the determination of B, Si, P and S in steel standard reference materials (NIST SRM 361, 362 and 364). Since the sensitivities of Si, P and S in digested sample solutions and standard solutions were found to be quite different, standard addition method was used for the determination of B, Si, P and S in this study. Good agreement was obtained between the certified values and the experimental results. The precision between sample replicates was better than 6.3% for all the determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号