首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past 5 years, transition-metal-mediated trifluoromethylation for the construction of various CF3-containing building blocks has been the focus of recent research in both industrial and academic communities. Progresses in the construction of C(sp2)–CF3 bonds and C(sp)–CF3 have been well reviewed. This Letter will focus on the cases of transition-metal-mediated C(sp3)–CF3 bond formation, which involves the trifluoromethylation of sp3-hybridized C–X bonds, alkyl organometallic reagents, sp3-hybridized C–H bonds, and alkene derivatives.  相似文献   

2.
Reported herein is an unprecedented protocol for trifluoromethylation of unactivated aliphatic C(sp3)?H bonds. With Cu(OTf)2 as the catalyst, the reaction of N‐fluoro‐substituted carboxamides (or sulfonamides) with Zn(CF3)2 complexes provides the corresponding δ‐trifluoromethylated carboxamides (or sulfonamides) in satisfactory yields under mild reaction conditions. A radical mechanism involving 1,5‐hydrogen atom transfer of N‐radicals followed by CF3‐transfer from CuII?CF3 complexes to the thus formed alkyl radicals is proposed.  相似文献   

3.
Successful benzylic C(sp3) H trifluoromethylation, pentafluoroethylation, and heptafluoropropylation of six‐membered heteroaromatic compounds were achieved as the first examples of a practical benzylic C(sp3) H perfluoroalkylation. In these reactions, BF2CnF2n+1 (n=1–3) functioned as both a Lewis acid to activate the benzylic position and a CnF2n+1 (n=1–3) source. The perfluoroalkylation proceeded at both terminal and internal positions of the alkyl chains. Perfluoroalkylated products were obtained in moderate to excellent yields, even on gram scale, and in a sequential procedure without isolation of the intermediates. By using this method, trifluoromethylation of a bioactive compound, as well as introduction of a CF3 group into a bioactive molecular skeleton, proceeded regioselectively.  相似文献   

4.
Successful benzylic C(sp3)? H trifluoromethylation, pentafluoroethylation, and heptafluoropropylation of six‐membered heteroaromatic compounds were achieved as the first examples of a practical benzylic C(sp3)? H perfluoroalkylation. In these reactions, BF2CnF2n+1 (n=1–3) functioned as both a Lewis acid to activate the benzylic position and a CnF2n+1 (n=1–3) source. The perfluoroalkylation proceeded at both terminal and internal positions of the alkyl chains. Perfluoroalkylated products were obtained in moderate to excellent yields, even on gram scale, and in a sequential procedure without isolation of the intermediates. By using this method, trifluoromethylation of a bioactive compound, as well as introduction of a CF3 group into a bioactive molecular skeleton, proceeded regioselectively.  相似文献   

5.
Herein, we report a Cu-mediated trifluoromethylation of carbonyl-type compounds and unactivated olefins enabled by visible-light irradiation via σ C(sp3)−C bond-functionalization. The reaction is distinguished by its modularity, mild conditions and wide scope—even in the context of late-stage functionalization—thus offering a complementary approach en route to valuable C(sp3)−CF3 architectures from easily accessible precursors.  相似文献   

6.
The functionalization of internal olefins has been a challenging task in organic synthesis. Efficient CuII‐catalyzed trifluoromethylation of internal olefins, that is, α‐oxoketene dithioacetals, has been achieved by using Cu(OH)2 as a catalyst and TMSCF3 as a trifluoromethylating reagent. The push–pull effect from the polarized olefin substrates facilitates the internal olefinic C?H trifluoromethylation. Cyclic and acyclic dithioalkyl α‐oxoketene acetals were used as the substrates and various substituents were tolerated. The internal olefinic C?H bond cleavage was not involved in the rate‐determining step, and a mechanism that involves radicals is proposed based on a TEMPO‐quenching experiment of the trifluoromethylation reaction. Further derivatization of the resultant CF3 olefins led to multifunctionalized tetrasubstituted CF3 olefins and trifluoromethylated N‐heterocycles.  相似文献   

7.
Combining an electrophilic iron complex [Fe(Fpda)(THF)]2 ( 3 ) [Fpda=N,N′‐bis(pentafluorophenyl)‐o‐phenylenediamide] with the pre‐activation of α‐alkyl‐substituted α‐diazoesters reagents by LiAl(ORF)4 [ORF=(OC(CF3)3] provides unprecedented access to selective iron‐catalyzed intramolecular functionalization of strong alkyl C(sp3)?H bonds. Reactions occur at 25 °C via α‐alkyl‐metallocarbene intermediates, and with activity/selectivity levels similar to those of rhodium carboxylate catalysts. Mechanistic investigations reveal a crucial role of the lithium cation in the rate‐determining formation of the electrophilic iron‐carbene intermediate, which then proceeds by concerted insertion into the C?H bond.  相似文献   

8.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

9.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

10.
We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2H) group into alkenes by visible‐light‐driven photoredox catalysis. The use of fac‐[Ir(ppy)3] (ppy=2‐pyridylphenyl) photocatalyst and shelf‐stable Hu's reagent, N‐tosyl‐S‐difluoromethyl‐S‐phenylsulfoximine, as a CF2H source is the key to success. The well‐designed photoredox system achieves synthesis of not only β‐CF2H‐substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single‐step and regioselective formation of C(sp3)–CF2H and C(sp3)?O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups.  相似文献   

11.
In the last few years, the development of versatile methodologies to incorporate trifluoromethyl groups into organic molecules has attracted significant attention in synthetic chemistry. This review gives an overview over the development on the trifluoromethylation of alkynes, which have not been solely discussed before. Formation of diverse C(sp, sp2, sp3)?CF3 bonds are all covered in this review.  相似文献   

12.
Mixtures of 1,1,3,3-tetrafluoroacetone and perfluorodi-n-propyl ketone have been photolyzed together over the temperature range 50° to 200°C, and the disproportionation/combination ratio for n-C3F7 and CF2H radicals has been determined to be Δ(n-C3F7, CF2H) = 0.072 ± 0.003. A reevaluation of existing data on CH3 and CF2H radicals leads to a value of Δ(CH3, CF2H) = 0.35. The large variations in Δ for the reactions of alkyl and perfluoroalkyl radicals with CF2H radicals are discussed. © John Wiley & Sons, Inc.  相似文献   

13.
We report herein an unprecedented protocol for radical carbotrifluoromethylation of unactivated alkenes. With Cu(OTf)2 as the catalyst, the reaction of unactivated alkenes, TMSCF3 and activated alkyl chlorides at room temperature provides the corresponding carbotrifluoromethylation products in satisfactory yields. Directed by trifluoromethylation of alkyl radicals, the method exhibits an excellent regioselectivity that is opposite to those driven by CF3 radical addition.  相似文献   

14.
We report a simple protocol for the photochemical Giese addition of C(sp3)‐centered radicals to a variety of electron‐poor olefins. The chemistry does not require external photoredox catalysts. Instead, it harnesses the excited‐state reactivity of 4‐alkyl‐1,4‐dihydropyridines (4‐alkyl‐DHPs) to generate alkyl radicals. Crucial for reactivity is the use of a catalytic amount of Ni(bpy)32+ (bpy=2,2′‐bipyridyl), which acts as an electron mediator to facilitate the redox processes involving fleeting and highly reactive intermediates.  相似文献   

15.
Rate constants were determined for the reactions of OH radicals with the hydrofluoroethers (HFEs) CH2FCF2OCHF2(k1), CHF2CF2OCH2CF3 (k2), CF3CHFCF2OCH2CF3(k3), and CF3CHFCF2OCH2CF2CHF2(k4) by using a relative rate method. OH radicals were prepared by photolysis of ozone at UV wavelengths (>260 nm) in 100 Torr of a HFE–reference–H2O–O3–O2–He gas mixture in a 1‐m3 temperature‐controlled chamber. By using CH4, CH3CCl3, CHF2Cl, and CF3CF2CF2OCH3 as the reference compounds, reaction rate constants of OH radicals of k1 = (1.68) × 10?12 exp[(?1710 ± 140)/T], k2 = (1.36) × 10?12 exp[(?1470 ± 90)/T], k3 = (1.67) × 10?12 exp[(?1560 ± 140)/T], and k4 = (2.39) × 10?12 exp[(?1560 ± 110)/T] cm3 molecule?1 s?1 were obtained at 268–308 K. The errors reported are ± 2 SD, and represent precision only. We estimate that the potential systematic errors associated with uncertainties in the reference rate constants add a further 10% uncertainty to the values of k1k4. The results are discussed in relation to the predictions of Atkinson's structure–activity relationship model. The dominant tropospheric loss process for the HFEs studied here is considered to be by the reaction with the OH radicals, with atmospheric lifetimes of 11.5, 5.9, 6.7, and 4.7 years calculated for CH2FCF2OCHF2, CHF2CF2OCH2CF3, CF3CHFCF2OCH2CF3, and CF3CHFCF2OCH2CF2CHF2, respectively, by scaling from the lifetime of CH3CCl3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 239–245, 2003  相似文献   

16.
Trifluoromethylation of [AuF3(SIMes)] with the Ruppert–Prakash reagent TMSCF3 in the presence of CsF yields the product series [Au(CF3)xF3−x(SIMes)] (x=1–3). The degree of trifluoromethylation is solvent dependent and the ratio of the species can be controlled by varying the stoichiometry of the reaction, as evidenced from the 19F NMR spectra of the corresponding reaction mixtures. The molecular structures in the solid state of trans-[Au(CF3)F2(SIMes)] and [Au(CF3)3(SIMes)] are presented, together with a selective route for the synthesis of the latter complex. Correlation of the calculated SIMes affinity with the carbene carbon chemical shift in the 13C NMR spectrum reveals that trans-[Au(CF3)F2(SIMes)] and [Au(CF3)3(SIMes)] nicely follow the trend in Lewis acidities of related organo gold(III) complexes. Furthermore, a new correlation between the Au−Ccarbene bond length of the molecular structure in the solid state and the chemical shift of the carbene carbon in the 13C NMR spectrum is presented.  相似文献   

17.
The ultraviolet absorption spectrum, kinetics, and mechanism of the self reaction of CF3CF2O2 radicals have been studied in the gas phase at 295 K. Two techniques were used; pulse radiolysis UV absorption to measure the spectrum and kinetics, and long-path length FTIR spectroscopy to identify and quantify the reaction products. Absorption cross sections were quantified over the wavelength range 220–270 nm. At 230 nm, σ = (2.74 ± 0.46) ×10?18 cm2 molecule?1. This absorption cross section was used to derive the observed self reaction rate constant for reaction (1), defined as, ?d[CF3CF2O2]/dt = 2k1obs[CF3CF2O2]2: k1obs = (2.10 ± 0.38) ×10?12 cm3 molecule?1 s?1 (2σ). The observed products following the self reaction of CF3CF2O2 radicals were COF2, CF3O3CF3, CF3O3C2F5, and CF3OH. CF3O2CF3 was tentatively identified as a product. The carbon balance was 90–100%. The self reaction of CF3CF2O2 radicals was found to proceed via one channel to produce CF3CF2O radicals which then decompose to give CF3 radicals and COF2. In the presence of O2, CF3 radicals are converted into CF3O radicals. CF3O radicals have several fates; self reaction to give CF3O2CF3; reaction with CF3O2 radicals to give CF3O3CF3; reaction with C2F5O2 radicals to give CF3O3C2F5; or reaction with CF3CF2H to give CF3OH. As part of this work a rate constant of (2.5 ± 0.6) ×10?16 cm3 molecule?s?1 was measured for the reaction of Cl atoms with CF3CHF2 using a relative rate technique. Results are discussed with respect to the atmospheric chemistry of CF3CF2H (HFC-125). © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Hydrogen abstration from H2S by CF3 radicals, generated by the photolysis of both CF3COCF3 and CF3I, has been studied in the temperature range 314–434 K. The rate constant, based on the value of 1013.36 cm3/mol · s for the recombination of CF3 radicals, is given by with CF3COCF3 as the radical source, and with CF3I as the radical source, where k2 is in cm3/mol · s and E is in J/mol. These results resolve a previously existing controversy concerning the values of the rate constants for this reaction. They show that CF3 radicals are less reactive than CH3 radicals in attacking H2S, and this behavior indicates that polar effects play a significant role in the hydrogen transfer reactions of CF3 radicals.  相似文献   

19.
The process of selectively introducing a CF3 group into an organic molecule using inexpensive,stable,and solid sodium trifluoromethanesulfinate has rapidly advanced in recent years to become an eco-friendly method used by organic chemists to synthesize various natural and bioactive molecules.This review focuses on advances made within the last five years regarding C-H functionalisation,namely thermochemical C(sp2)-H(thio)trifluoromethylations,photochemical C(sp2)...  相似文献   

20.
The ultraviolet absorption spectrum and the self reaction kinetics of CF3O2 radicals have been studied in the gas phase at 298 K using the pulse radiolysis technique. Long pathlength Fourier transform infrared (FTIR) spectroscopy was used to identify and quantify reaction products. Absorption cross sections were quantified over the wavelength range 215–270 nm. The measured cross section at 230 nm was; Errors represent statistical (2σ) together with our estimate of potential systematic errors. The absorption cross section data were then used to derive the observed self reaction rate constant for reaction (1), defined as ?d[CF3O2]/dt = 2k obs[CF3O2]2 klobs = (3.6 ± 0.9) × 10?12 cm3 molecule?1 s?1. The only carbon containing product observed by FTIR spectroscopy was CF3OOOCF3. Consideration of the loss of CF3O2 radicals to form the trioxide CF3OOOCF3 allows derivation of the true bimolecular rate constant for reaction (1); k1 = (1.8 ± 0.5) × 10?12 cm3 molecule?1 s?1. These results are discussed with respect to previous studies of the absorption spectra of peroxy radicals, the kinetics, and mechanisms of their self reaction. © John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号