首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The production of 1,3-propanediol (1,3-PD) was investigated with Klebsiella pneumoniae DSM 4799 using raw glycerol without purification obtained from a biodiesel production process. Fed-batch cultures with suspended cells revealed that 1,3-PD production was more effective when utilizing raw glycerol than pure glycerol (productivity after 47 h of fermentation, 0.84 g?L?1?h?1 versus 1.51 g?L?1?h?1 with pure and raw glycerol, respectively). In addition, more than 80 g/L of 1,3-PD was produced using raw glycerol; this is the highest 1,3-PD concentration reported thus far for K. pneumoniae using raw glycerol. Repeated fed-batch fermentation with cell immobilization in a fixed-bed reactor was performed to enhance 1,3-PD production. Production of 1,3-PD increased with the cycle number (1.06 g?L?1?h?1 versus 1.61 g?L?1?h?1 at the first and fourth cycle, respectively) due to successful cell immobilization. During 46 cycles of fed-batch fermentation taking place over 1,460 h, a stable and reproducible 1,3-PD production performance was observed with both pure and raw glycerol. Based on our results, repeated fed batch with immobilized cells is an efficient fermentor configuration, and raw glycerol can be utilized to produce 1,3-PD without inhibitory effects caused by accumulated impurities.  相似文献   

2.
A high-performance liquid chromatographic (HPLC) method with refractive-index detection has been developed for simultaneous analysis of glycerol, dihydroxyacetone (DHA), 3-hydroxypropionaldehyde (3-HPA), and 1,3-propanediol (1,3-PD), four key substances in the metabolic pathway for production of 1,3-PD from glycerol by microorganism fermentation. The compounds were separated on a 300 mm × 7.8 mm ion-exclusion column with a 65:35 (v/v) mixture of deionized water and acetonitrile, containing 0.0005 M H2SO4, as mobile phase. The flow rate was 0.5 mL min?1. Under these conditions the retention times of 3-HPA, DHA, glycerol, and 1,3-PD were 6.87, 14.63, 16.37, and 18.50 min, respectively. Relative standard deviations and average recoveries were between 0.42 and 0.63% and between 96.7 and 103.1%, respectively; detection limits were between 0.017 and 0.038 g L?1. The method enabled separation of these compounds.  相似文献   

3.
This study evaluated the propionic acid (HPr) production from crude glycerol (CG) (5000 mg L?1) in an anaerobic fluidized bed reactor (AFBR). Grounded tire particles (2.8–3.35 mm) were used as support material for microbial adhesion. The reactor was operated with hydraulic retention times (HRT) varying from 8 to 0.5 h under mesophilic (30 °C) conditions. The HPr was the main metabolite produced, increasing in composition from 66.5 to 99.6% by decreasing the HRT from 8 to 0.5 h. Other metabolic products were 1,3-propanediol, with a maximum of 29.4% with an HRT of 6 h, ethanol, acetic, and butyric acids. The decrease in HRT from 8 to 0.5 h decreased the HPr yield, with a maximum of 0.48?±?0.06 g HPr g COD?1 and an HRT of 6 h, and favored HPr productivity, with a maximum of 4.09?±?1.24 g L?1 h?1 and HRT of 0.5 h. In the biogas, the H2 content increased from 12.5 to 81.2% by decreasing the HRT from 8 to 0.5 h. These results indicate the potential application of the AFBR for HPr production using an immobilized mixed culture.  相似文献   

4.
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae XJPD-Li under different aeration strategies were investigated. In batch fermentation, the results showed that the final concentration of 1,3-PD and yield on glycerol were 13.44 g/l and 0.73 mol/mol under the anaerobic condition (N2, 0.4 vvm), 11.55 g/l and 0.62 mol/mol without aeration, and 8.73 g/l and 0.47 mol/mol under the aerobic condition (air, 0.4 vvm), respectively. Under the aerobic condition, the yield of 1,3-PD on glycerol was the lowest, while the biomass (optical density at 650 nm) was the highest among these three conditions. In the fed-batch culture, the final concentration and the yield of 1,3-PD was 60.82 g/l and 0.61 mol/mol under the anaerobic condition (N2, 0.4 vvm), 56.43 g/l and 0.53 mol/mol without aeration, and 65.26 g/l and 0.56 mol/mol under the aerobic condition. All these three conditions had good productivities of 1,3-PD, which were 3.35 g/l·h under the anaerobic condition (N2, 0.4 vvm), 3.13 g/l·h without aeration, and 3.16 g/l·h under the aerobic condition within the initial 12 h.  相似文献   

5.
The fermentative production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under different fed-batch strategies was investigated. pH-stat fed-batch strategies proved to be not effective for economical 1,3-PD production for the existence of relatively high concentration of byproducts and residual glycerol at the end of the fermentation. However, in the pH-stat fed-batch strategy, an important phenomenon was observed that the yields of two main byproducts, 2,3-butanediol and lactic acid, were closely related to pH value. The dominant byproduct was 2,3-butanediol at a pH value of 5.0 to 6.5 but changed to be lactic acid at a pH value of 7.1 to 8.0. Based on the analysis of the phenomenon, a self-protection mechanism in K. pneumoniae, namely that the growing K. pneumoniae cells switch the metabolic pathways responding to environmental pH changes, was proposed. Thus a kind of feeding strategy was further applied during which the pH value was fluctuated between 6.3 and 7.3 periodically by feeding glycerol–ammonia mixture and sulphuric acid to make the metabolic pathways of 2,3-butanediol and lactic acid sub-active under the periodical low or high pH stress. At last, efficient 1,3-PD production was fulfilled under this fed-batch strategy, and the best results were achieved leading to 70 g/l 1,3-PD with a yield of 0.70 mol/mol glycerol and productivity of 0.97 g/l/h, while the two main byproducts and residual glycerol were under low concentrations.  相似文献   

6.
With the problems related to chemical methods of pyruvic acid (PA) synthesis, a fast-growing interest has been observed in research aiming at reducing the production cost of PA by applying biotechnological methods. This study aimed to investigate the potential applicability of Yarrowia lipolytica Wratislavia 1.31 yeast strain for valorisation of pure and crude glycerol through the production of industrially desired PA. Conditions required for the effective PA biosynthesis, i.e., pH value, thiamine concentration, agitation, and substrate concentration, were examined in batch and fed-batch cultivation modes. The efficient production of PA occurred under the limitation of thiamine (1 µg L?1) and was stimulated by moderate pH (4.5) and agitation (800 rev min?1) of the culture. Under optimal conditions, Y. lipolytica Wratislavia 1.31 was able to produce 85.2 g L?1 of PA with volumetric productivity of 0.90 g L?1 h?1. The yield of PA biosynthesis reached a high level of 1.03 g g?1. Obtained results confirmed the aptitude of Y. lipolytica yeast to produce high amounts of PA from simple glycerol-containing media. Presented process was very promising and might be considered as an attractive alternative for currently used chemical methods of PA synthesis.  相似文献   

7.
The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82?±?2 mg/g CAB-H and 730?±?20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 °C, 2-fold higher than when using 15 FPU/g bagasse, 44?±?2 mg/g CAB-H, and 450?±?50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0?±?0.2 g L?1 and 3.33 g L?1 h?1, respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L?1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L?1), ethanol concentration and productivity were 8.2?±?0.1 g L?1 and 2.7 g L?1 h?1 in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.  相似文献   

8.
In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82–37.83 g L?1 in average value) and ethanol productivities (about 3.30–6.31 g L?1 h?1) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L?1) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30–98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.  相似文献   

9.
This study investigated the biological conversion of crude glycerol generated from a commercial biodiesel production plant as a by-product to 1,3-propanediol (1,3-PD). Statistical analysis was employed to derive a statistical model for the individual and interactive effects of glycerol, (NH4)2SO4, trace elements, pH, and cultivation time on the four objectives: 1,3-PD concentration, yield, selectivity, and productivity. Optimum conditions for each objective with its maximum value were predicted by statistical optimization, and experiments under the optimum conditions verified the predictions. In addition, by systematic analysis of the values of four objectives, optimum conditions for 1,3-PD concentration (49.8 g/L initial glycerol, 4.0 g/L of (NH4)2SO4, 2.0 mL/L of trace element, pH 7.5, and 11.2 h of cultivation time) were determined to be the global optimum culture conditions for 1,3-PD production. Under these conditions, we could achieve high 1,3-PD yield (47.4%), 1,3-PD selectivity (88.8%), and 1,3-PD productivity (2.1/g/L/h) as well as high 1,3-PD concentration (23.6 g/L).  相似文献   

10.
In this study, we investigated the impact of nitrate dose on toluene degradation by Pseudomonas putida to elucidate the upper limit of nitrate concentration and whether an optimum ratio of nitrate to toluene concentration exists. Batch microcosm studies were conducted in order to monitor toluene degradation for various ratios (2–20) of nitrate to toluene with nitrate concentrations ranging from 0 to 700 mg?L?1 for a given toluene concentration of 50 and 25 mg?L?1 during 4-day (short term) and 14-day (long term) incubation time, respectively. The short-term study revealed that nitrate concentration of 500 mg?L?1 was toxic to bacteria and the optimum concentration was 300 mg?L?1 yielding the highest toluene degradation rate (0.083 mg?L?1?h?1). In the batch study of long term, toluene degradation was limited to 6 days after which the nitrate at 50 mg?L?1 was depleted, indicating that nitrate was a necessary electron acceptor. For both batch studies, an optimum ratio of 6 was found yielding the highest toluene degradation rate. This indicates that an appropriate nitrate dose is essential for efficient degradation of toluene when bioremediation of groundwater contaminated with toluene is under consideration.  相似文献   

11.
A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L?1), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO4 2?] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L?1 and sulfate concentrations of 373, 746, and 1,493 mg SO4 2? L?1 in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30?±?1°C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO4 2?] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO4 2?] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO4 2?] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.  相似文献   

12.
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30?g?g?1) and productivity (0.19?g?L?1?h?1). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3?g?L?1 resulted in high biomass production. The highest biomass concentration (21?g?L?1), yield (0.45?g?g?1) and productivity (0.31?g?L?1?h?1), as well as ribonucleotide production (13.13?mg?g?1), were observed at 700?rpm and 0.5?vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.  相似文献   

13.
As the addition of low concentrations of oxygen can favor the initial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds, this work verified the applicability of the microaerobic technology to enhance BTEX removal in an anaerobic bioreactor supplemented with high and low co-substrate (ethanol) concentrations. Additionally, structural alterations on the bioreactor microbiota were assessed throughout the experiment. The bioreactor was fed with a synthetic BTEX-contaminated water (~ 3 mg L?1 of each compound) and operated at a hydraulic retention time of 48 h. The addition of low concentrations of oxygen (1.0 mL min?1 of atmospheric air at 27 °C and 1 atm) assured high removal efficiencies (> 80%) for all compounds under microaerobic conditions. In fact, the applicability of this technology showed to be viable to enhance BTEX removal from contaminated waters, especially concerning benzene (with a 30% removal increase), which is a very recalcitrant compound under anaerobic conditions. However, high concentrations of ethanol adversely affected BTEX removal, especially benzene, under anaerobic and microaerobic conditions. Finally, although bacterial community richness decreased at low concentrations of ethanol, in general, the bioreactor microbiota could deal with the different operational conditions and preserved its functionality during the whole experiment.  相似文献   

14.
The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose?Cxylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8?±?0.31?g L?1), ethanol productivity (1.06?g L?1 h?1) and ethanol yield (0.458?g g?1) by fermentation of glucose?Cxylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08?±?0.142?g L?1, ethanol yield of 0.44?g g?1, productivity of 0.45?g L?1?h?1 and biomass yield of 0.40?g g?1.  相似文献   

15.
Multienzymatic conversion of sucrose into fructose and gluconic acid was studied through fed-batch and continuous (in a membrane reactor) processes. The law of substrate addition (sucrose or glucose) for the fed-batch process which led to a yield superior to 80% was the decreasing linear type, whose feeding rate (?; L/h) was calculated through the equation: ? = ?o ? k.t, where ?o (initial feeding rate, L/h), k (linear addition constant, L/h 2), and t (reaction time, h). In the continuous process, the yield of conversion of sucrose (Y) was superior to 70% under the following conditions: dilution rate?=?0.33 h?1, total duration of 15 h, pH 5.0, 37 °C and initial sucrose concentration of 64 g/L (Y?=?92%), 100 g/L (Y?=?83%), or 150 g/L (Y?=?76%).  相似文献   

16.
Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose–xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h?1. With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.  相似文献   

17.
Cassava wastewater (cww) contains high concentrations of easily acidifying compounds, requiring a buffered system to allow a stable operation during anaerobic digestion (AD). The possibility to include a preliminary one-step fungi treatment aimed at raising the pH and buffering the cww prior to AD was studied. Preliminary tests were performed with a naturally grown fungal mixed culture, under aerated (AE), non-aerated (NAE) and initially oxygen-deprived (IOD) conditions. The cww was pre-treated by the NAE condition, until reaching a soluble chemical oxygen demand (COD) of 10 g?L?1 and pH 6.4 (batch A) and pH 5.7 (batch B). The fungal mixed culture showed ability to biodegrade the cww with initial pH of 4.4 and 14,500 mg?COD?L-1, raising the pH over 8.5, with only 13 % of COD remaining within 27 days for both AE and NAE condition. The fungal pre-treated-cww (FPTcww) was subjected to anaerobic digestion under different buffered (CaCO3 and NaHCO3) and non-buffered conditions. The FPTcww with initial pH at 6.4 provided stability during the anaerobic biodegradability tests, showing the possibility of system operation without buffer addition, with final pH around 7. The application of a fungal pre-treatment can be a promising strategy to permit the anaerobic digestion of carbohydrate-rich wastewaters.  相似文献   

18.
Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L?1 with a productivity of 0.926 ± 0.006 g L?1 h?1. The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.  相似文献   

19.
A new electrode was developed by one-step potentiostatic electrodeposition (at ?2.0 V for 20 s) of Au/SiO2 nanoparticles on a glassy carbon electrode. The resulting electrode (nano-Au/SiO2/GCE) was characterized by scanning electronic microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) at the nano-Au/SiO2/GCE were thoroughly investigated. Compared to the unmodified electrode, the overpotential decreased by about 300 mV, and the current response significantly increased. These changes indicated that the modified electrode showed excellent catalytic activity in the oxidation of NADH. A linear relationship was obtained in the NADH concentration range from 1.0?×?10?6 to 1.0?×?10?4 mol?L?1. In addition, amperometric sensing of ethanol at the nano-Au/SiO2/GCE in combination with alcohol dehydrogenase and nicotinamide adenine dinucleotide was successfully demonstrated. A wide linear response was also found for ethanol in the range from 5.0?×?10?5 to 1.0?×?10?3 mol?L?1 and 1.0?×?10?3 to 1.0?×?10?2 mol?L?1, respectively. The method was successfully applied to determine ethanol in beer and biological samples.  相似文献   

20.
The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 °C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L?1 h?1. The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L?1 h?1. The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L?1 h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号