首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
Spin‐labeled nitroxide derivatives of podophyllotoxin had better antitumor activity and less toxicity than that of the parent compounds. However, the 2‐H configurations of these spin‐labeled derivatives cannot be determined by nuclear magnetic resonance (NMR) methods. In the present paper, a high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) and a high‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI/MS/MS) method were developed and validated for the separation, identification of four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 position. In the HPLC‐ESI/MS spectra, each pair of diastereoisomers of the spin‐labeled derivatives in the mixture was directly confirmed and identified by [M+H]+ ions and ion ratios of relative abundance of [M‐ROH+H]+ (ion 397) to [M+H]+. When the [M‐ROH+H]+ ions (at m/z 397) were selected as the precursor ions to perform the MS/MS product ion scan. The product ions at m/z 313, 282, and 229 were the common diagnostic ions. The ion ratios of relative abundance of the [M‐ROH+H]+ (ion 397) to [M+H]+, [A+H]+ (ion 313) to [M‐ROH+H]+, [A+H‐OCH3]+ (ion 282) to [M‐ROH+H]+ and [M‐ROH‐ArH+H]+ (ion 229) to [M‐ROH+H]+ of each pair of diastereoisomers of the derivatives specifically exhibited a stereochemical effect. Thus, by using identical chromatographic conditions, the combination of DAD and MS/MS data permitted the separation and identification of the four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 in the mixture.  相似文献   

2.
Carbapenems show recognized instability in aqueous solutions; therefore some care must be taken in their handling and preparation and their use in the hospital environment. The stability and degradation products of imipenem were investigated from conditions that simulate its clinical use. For this, a simple stability‐indicating method by HPLC‐DAD was validated with a focus on the quantitation of drug concentration remaining from infusion solutions (sodium chloride 0.9% and glucose 5%). The degradation products formed were identified by high‐resolution mass spectrometry (ESI‐Q‐TOF‐MS/MS), with detection of the [M + H]+ ions at m/z 318 (DP‐1), m/z 599 (DP‐2) and m/z 658 (DP‐3). The most probable elemental compositions were obtained with a high degree of confidence, where the error between the masses observed and calculated was 1.25 ppm for DP‐1, ?0.33 ppm for DP‐2 and 1.82 ppm for DP‐3. The DP‐1 degradation product resulted from cleavage of the β‐lactam ring; DP‐2 corresponded to the drug dimer; and DP‐3 was generated from the interaction between imipenem and cilastatin. The proposed method provides a safe and reliable alternative for the quantitation of imipenem, and the stability data obtained by ESI‐Q‐TOF help in understanding the drug behavior under the conditions of clinical use.  相似文献   

3.
An HPLC separation method with triethylammonium acetate mobile phase additive developed for the analysis of impurities in polysulphonated azo dyes provides good separation selectivity and compatibility with electrospray ionisation (ESI) mass spectrometry. The negative‐ion ESI mass spectra containing only peaks of deprotonated molecules [M–H] for monosulphonic acids, [M–xH]x, and sodiated adducts [M–(x + y)H + yNa]x for polysulphonic acids allow easy molecular mass determination of unknown impurities. Based on the knowledge of the molecular masses and of the fragment ions in the MS/MS spectra, probable structures of trace impurities in commercial dye samples are proposed. To assist in the interpretation of the mass spectra of complex polysulphonated azodyes, additional information can be obtained after chemical reduction of azodyes to aromatic amines. The structures of the non‐sulphonated reduction products can be determined by reversed‐phase HPLC/MS with positive‐ion atmospheric pressure chemical ionisation and of the sulphonated products by ion‐pairing HPLC/MS with negative‐ion ESI.  相似文献   

4.
Dopamine [DA]+ (m/z 154), DA dimer [2DA‐H]+ (m/z 307) and DA quinone [DAQ]+ (m/z 152) are detected in positive ion mode electrospray ionization mass spectrometry (ESI MS) of dopamine in 50/1/49 (vol%) water/acetic acid/methanol. H/D exchange experiments support a covalent structure of DA dimer. Thus, ESI of DA may involve 1e?, 1H+ oxidation processes followed by rapid radical dimerization. The DA quinone signal is low in ESI MS, which indicates a low efficiency of the 2e?, 2H+ oxidation reaction. On‐line electrochemistry ESI MS (EC/ESI MS) with low electrochemical cell voltage floated on high ES voltage increases electrospray current and improves sensitivity for DA. The DA quinone signal increases and DA dimer signal decreases. A new configuration of the ESI MS instrument with a cone‐shaped capillary inlet significantly enhanced sensitivity of ESI and EC/ESI MS measurements. A DA quinone‐cysteine adduct [DAQ+Cys]+ was detected in solutions of DA with cysteine (Cys). ESI MS and EC/ESI MS indicate formation of the DA quinone‐cysteine adduct by 1e? pathway. Oxidation pathways in ESI MS are relevant to biological reactivity of DA and Cys.  相似文献   

5.
Lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain showed an interesting anti‐adhesion activity against biofilm formation of human pathogenic bacterial strains. The chemical characterisation of the crude extract of V9T14 strain was first developed through electrospray ionisation mass spectrometry (ESI‐MS) and ESI‐MS/MS direct infusions: two sets of molecular ion species belonging to the fengycin and surfactin families were revealed and their structures defined, interpreting their product ion spectra. The LC/ESI‐MS analysis of the crude extract allowed to separate in different chromatogram ranges the homologues and the isoforms of the two lipopeptide families. The extract was then fractionated by silica gel chromatography in two main fractions, I and II. The purified biosurfactants were analysed through a new, rapid and suitable LC/ESI‐MS/MS method, which allowed characterising the composition and the structures of the produced lipopeptides. LC/ESI‐MS/MS analysis of fraction I showed the presence of C13, C14 and C15 surfactin homologues, whose structures were confirmed by the product ion spectra of the sodiated molecules [M + Na]+ at m/z 1030, 1044 and 1058. LC/ESI‐MS/MS analysis of fraction II confirmed the presence of two main fengycin isoforms, with the protonated molecules [M + H]+ at m/z 1478 and 1506 corresponding to C17 fengycin A and C17 fengycin B, respectively. Other homologues (C14 to C16) were revealed and confirmed as belonging to fengycin A or B according to the retention times and the product ions generated, although with the same nominal mass. Finally, a relative percentage content of each homologue for both lipopeptides families in the whole extract was proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, a new LC‐ESI‐MS/MS‐based method was validated for the quantitation of hemslecin A in rhesus monkey plasma using otophylloside A as internal standard (IS). Hemslecin A and the IS were extracted from rhesus monkey plasma using liquid–liquid extraction as the sample clean‐up procedure, and were subjected to chromatography on a Phenomenex Luna CN column (150 × 2.0 mm, 3.0 µm) with the mobile phase consisting of methanol and 0.02 mol/mL ammonium acetate (55:45, v/v) at a flow rate of 0.2 mL/min. Detection was performed on an Agilent G6410B tandem mass spectrometer by positive ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 580.5 [M + NH4]+ → 503.4 and m/z 518.2 [M + NH4]+ → 345.0 for hemslecin A and IS, respectively. The assay was linear over the concentration range of 0.5–200 ng/mL and was successfully applied to a pharmacokinetic study in rhesus monkeys. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
We installed a cold‐spray ionization (CSI) source on a mass spectrometer to investigate the self‐assembly behavior of an aggregation‐induced emission enhancement system. Using a CSI source and the three‐dimensional platform, a self‐assembly system of a salicylaldehyde azine (SAA) was studied in mixture solution. This method permitted the determination of the structural information of the solution state, which cannot be detected by conventional mass spectrometry. In addition to the [M+H]+ ion (M is the SAA molecule), many major ion clusters such as [2M+Na]+ at m/z 503, [3M+Na]+ at m/z 743, [4M+Na]+ at m/z 983 and higher order aggregates were observed in the CSI mass spectra. However, many fragment ions, with the exception of cluster ions, appeared with high abundance when the ESI ion source was used due to the desolvation chamber temperature, suggesting that some aggregation can be detected at low temperatures. To investigate the effect of solvent on the aggregation, the CSI‐mass spectrometry (MS) experiments of SAA in absolute ethanol solution and ethanol/water (good/poor solvent) mixture solution were conducted. The most abundant ion peak was protonated SAA (m/z 241) in absolute ethanol, but many cluster ions and some multiple charged ion peaks were observed after adding a small amount of water into the ethanol solution. The results showed good agreement with that inferred by the combinational analysis of scanning electron microscope and fluorescence microscopy, indicating that CSI‐MS is capable of providing self‐assembly information of labile molecules in the solution state. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A highly sensitive and selective method using LC‐ESI‐MS/MS and tandem‐SPE was developed to detect trace amounts of avoparcin (AV) antibiotics in animal tissues and milk. Data acquisition using MS/MS was achieved by applying multiple reaction monitoring of the product ions of [M + 3H]3+ and the major product ions of AV‐α and ‐β at m/z 637 → 86/113/130 and m/z 649 → 86/113/130 in ESI(+) mode. The calculated instrumental LODs were 3 ng/mL. The sample preparation was described that the extraction using 5% TFA and the tandem‐SPE with an ion‐exchange (SAX) and InertSep C18‐A cartridge clean‐up enable us to determine AV in samples. Ion suppression was decreased by concentration rates of each sample solution. These SPE concentration levels could be used to detect quantities of 5 ppb (milk), 10 ppb (beef), and 25 ppb (chicken muscle and liver). The matrix matching calibration graphs obtained for both AV‐α (r >0.996) and ‐β (r >0.998) from animal tissues and milk were linear over the calibration ranges. AV recovery from samples was higher than 73.3% and the RSD was less than 12.0% (n = 5).  相似文献   

9.
The sensitivity of detection of uric acid (H2U) in positive ion mode electrospray ionization mass spectrometry (ESI MS) was enhanced by uric acid oxidation during electrospray ionization. With a carrier solution of pH 6.3>pKa1=5.4 of H2U, protonated unoxidized uric acid [H2U+H]+ (m/z 169) was detected together with the protonated uric acid dimer [2H2U+H]+ (m/z 337). The dimer likely forms by 1e? oxidation of urate (HU?) followed by rapid radical dimerization. A covalent structure of the dimer was verified by H/D exchange experiments. Efficiency of 2e?, 2H+ oxidation of uric acid is low during ESI in pH 6.3 carrier solution and improves when a low on‐line electrochemical cell voltage is floated on the high voltage of the ES in on‐line electrochemistry ESI MS (EC/ESI MS). The intensity of the uric acid dimer decreases with an increase in the low applied voltage. In a carrier solution with 0.1 M KOH, pH 12.7>pKa2=9.8 of H2U, allantoin (Allnt) (MW 158.04), the final 2e?, 2H+ oxidation product of uric acid, was detected as a potassium complex [K(Allnt)+K]+ (m/z 235) and the [2H2U+H]+ dimer was not detected. In direct ESI MS analysis of 1000‐fold diluted urine [NaHU+H]+ (pKsp NaHU=4.6) was detected in 40/60 (vol%) water/methanol, 1 mM NH4Ac, pH ca. 6.3 carrier solution. A new configuration of the ESI MS instrument with a cone‐shaped capillary inlet significantly enhanced sensitivity in ESI and EC/ESI MS measurements of uric acid.  相似文献   

10.
Sesquiterpene lactones (SL) have been reported with various biological effects. Among the described SL skeletons, hirsutinolide and glaucolide have not been extensively studied by mass spectrometry (MS), especially how to distinguish them in organic matrices. Thus, this paper reports (1) a strategy of their differentiation based on MS behavior during the ionization and (2) a proposal of the fragmentation pattern for both SL‐subtypes. ESI(+)‐HRMS data of four isolated SL (hirsutinolides 1 and 3 ; glaucolides 2 and 4 ) were recorded by direct and UPLC water‐sample combined injections. These analyses revealed that hirsutinolides and glaucolides formed [M+Na]+ ion during the operation of the direct MS injection, and ([M+Na]+ and [M+H‐H2O]+) and [M+H]+ ions were respectively observed for hirsutinolides and glaucolides during the operation of combined UPLC water and sample MS injection. Computational simulations showed that the complex hirsutinolide ( 1 )‐Na+ formed with a lower preparation energy compared with the complex glaucolide ( 2 )‐Na+. However, despite their different behavior during the ionization process, ESI(+)‐HRMS/MS analyses of 1 ‐ 4 gave similar fragmentation patterns at m/z 277, 259, 241, and 231 that can be used as diagnostic ions for both skeletons. Moreover, the differentiation strategy based on the nature of the complex SL‐adducts and their MS/MS fragmentation pattern were successfully applied for the chemical characterization of the extract from Vernonanthura tweedieana using UPLC‐ESI‐HRMS/MS. Among the characterized metabolites, SL with hirsutinolide and glaucolide skeletons showed the aforementioned diagnostic fragments and an ionization behavior that was similar to those observed during the water‐sample combined injection.  相似文献   

11.
A simple and sensitive liquid chromatography tandem multiple‐stage mass spectrometry (HPLC/MS/MS) method suitable for bulk lisinopril analysis was developed, by which lisinopril and its RSS isomer were separated and differentiated. In the collision‐induced dissociation (CID) mass spectra of the [M + H]+ ions, the abundance of the fragment ion of m/z 246 for lisinopril was about two times higher than the ion of m/z 245; however, the former fragment ion was noted to be a little lower than the latter for RSS isomer at all collision energies. In the CID mass spectra of the [M + Li]+ ion, the abundance of the rearrangement ion of m/z 315 for the RSS isomer was about three times higher than that for lisinopril. Furthermore, the difference was supported by the results of energy‐resolved mass spectrometry (ERMS) in the test range of collision energies. Similar differences were also observed between the CID mass spectra of lisinopril and RSS isomer methylester, which indicated that the RSS isomer could be rapidly characterized by the CID mass spectra of both the protonated and lithium adduct ion. Elemental compositions of all the ions were confirmed by Fourier Transform ion cyclotron resonance ESI mass spectrometry (FT‐ICR‐ESI/MS). In addition, theoretical computations were carried out to support the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A simple method based on liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (LC‐DAD‐ESI‐MS) was developed for the quality assessment of Cortex Phellodendri (CP), which was mainly derived from two species of Phellodendron chinense Schneid and Phellodendron amurense Rupr. Total 41 compounds, including 14 phenols, 24 alkaloids and three liminoidal triterpenes were identified or tentatively characterized from the 75% methanol extract of CP samples by online ESI‐MSn fragmentation and UV spectra analysis. Among them, two phenols and six alkaloids were simultaneously quantified using HPLC‐DAD method. The validated HPLC‐DAD method showed a good linearity, precision, repeatability and accuracy for the quantification of eight marker compounds. Furthermore, the plausible fragmentation pathway of the representative compounds were proposed in the present study. The differences of the chemical constituents content and the comprehensive HPLC profiles between the two CP species using LC‐DAD‐ESI‐MS method are reported for the first time, indicating that the CP drugs from different resources should be used separately in the clinic. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Benzofurazan derivatization reagents, 4‐[2‐(N,N‐dimethylamino)ethylaminosulfonyl]‐7‐(2‐aminopentylamino)‐2,1,3‐benzoxadiazole (DAABD‐AP) and 4‐[2‐(N,N‐dimethylamino) ethylaminosulfonyl]‐7‐(2‐aminobutylamino)‐2,1,3‐benzoxadiazole (DAABD‐AB), for short‐chain carboxylic acids in liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) were synthesized. These reagents reacted with short chain carboxylic acids in the presence of the condensation reagents at 60°C for 60 min. The generated derivatives were separated on the reversed‐phase column and detected by ESI‐MS/MS with the detection limits of 0.1–0.12 pmol on column. Upon collision‐induced dissociation, a single and intense product ion at m/z 151 was observed. These results indicated that DAABD‐AP and DAABD‐AB are suitable as the derivatization reagents in LC/ESI‐MS/MS analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Three liquid chromatography–tandem mass spectrometry (LC‐MS/MS) methods were respectively developed and validated for the simultaneous or independent determination of taurine and edaravone in rat plasma using 3‐methyl‐1‐p‐tolyl‐5‐pyrazolone and sulfanilic acid as the internal standards (IS). Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 µm) column. Gradient 0.03% formic acid–methanol, isocratic 0.1% formic acid–methanol (90:10) and 0.02% formic acid–methanol (40:60) were respectively selected as the mobile phase for the simultaneous determination of two analytes, taurine or edaravone alone. The MS acquisition was performed in multiple reaction monitoring mode with a positive and negative electrospray ionization source. The mass transitions monitored were m/z [M + H]+ 175.1 → 133.0 and [M + H]+ 189.2 → 147.0 for edaravone and its IS, m/z [M ? H]? 124.1 → 80.0 and [M ? H]? 172.0 → 80.0 for taurine and its IS, respectively. The validated methods were successfully applied to study the pharmacokinetic interaction of taurine and edaravone in rats after independent intravenous administration and co‐administration with a single dose. Our collective results showed that there were no significant alterations on the main pharmacokinetic parameters (area under concentration–time curve, mean residence time, half‐life and clearance) of taurine and edaravone, implying that the proposed combination therapy was pharmacologically feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In studying the metabolic pathways underlying the mechanism of carcinogenesis of the heterocyclic amine of 2‐amino‐3‐methylimidazo[4,5‐f]quinoline (IQ), we recently found a new metabolite which gave an [M + H]+ ion of m/z 217 when subjected to electrospray ionization (ESI) in positive‐ion mode. Following ip injection of this metabolite of m/z 217 (designated as m/z 217) to beta‐naphthoflavone‐treated mice, 57% of the total radioactivity was recovered in a 24‐h mouse urine sample. HPLC separation followed by MS analysis indicates that the urine sample contained m/z 217 (36 ± 3% of total recovered radioactivity) and two other peaks that gave rise to the [M + H]+ ions of m/z 393 (31 ± 4%, designated as m/z 393) and m/z 233 (14 ± 1%, designated as m/z 233). Beta‐glucuronidase treatment of m/z 393 resulted in a radioactive peak corresponding to m/z 217. ESI in combination with various mass spectrometry techniques, including multiple‐stage mass spectrometry, exact mass measurements and H/D exchange followed by tandem mass spectrometry, was used for structural characterization. The urinary metabolites of m/z 217, 393 and 233 were identified as 1,2‐dihydro‐2‐amino‐5‐hydroxy‐3‐methylimidazo[4,5‐f]quinoline, 1,2‐dihydro‐2‐amino‐5‐O‐glucuronide‐3‐methylimidazo[4,5‐f]quinoline and 1,2‐dihydro‐2‐amino‐5,7‐dihydroxy‐3‐methylimidazo[4,5‐f]quinoline, respectively. Our results demonstrated that m/z 217 is biotransformed in vivo to m/z 393 by O‐glucuronidation and to m/z 233 by oxidation. The observation of these more polar metabolites relative to IQ suggests that they may arise from a previously undescribed detoxicification pathway. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Fragmentation reactions of β‐hydroxymethyl‐, β‐acetoxymethyl‐ and β‐benzyloxymethyl‐butenolides and the corresponding γ‐butyrolactones were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) using collision‐induced dissociation (CID). This study revealed that loss of H2O [M + H ?18]+ is the main fragmentation process for β‐hydroxymethylbutenolide (1) and β‐hydroxymethyl‐γ‐butyrolactone (2). Loss of ketene ([M + H ?42]+) is the major fragmentation process for protonated β‐acetoxymethyl‐γ‐butyrolactone (4), but not for β‐acetoxymethylbutenolide (3). The benzyl cation (m/z 91) is the major ion in the ESI‐MS/MS spectra of β‐benzyloxymethylbutenolide (5) and β‐benzyloxymethyl‐γ‐butyrolactone (6). The different side chain at the β‐position and the double bond presence afforded some product ions that can be important for the structural identification of each compound. The energetic aspects involved in the protonation and gas‐phase fragmentation processes were interpreted on the basis of thermochemical data obtained by computational quantum chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Soyalkaloid A was isolated from Portulaca oleracea L. for the first time in our laboratory and then a rapid and sensitive ultra‐high‐performance liquid chromatography electrospray ionization quadrupole–time of flight mass spectrometry (UHPLC–ESI–Q–TOF/MS) method with hesperidin as internal standard (IS) was developed and validated to investigate the pharmacokinetics of soyalkaloid A in rats after oral and intravenous administrations. The analysis was achieved on an Agilent Zorbax Eclipse Plus C18 Column (2.1 × 50 mm, 1.8 μm) by elution with acetonitrile and water (containing 0.1% formic acid), at a flow rate of 0.3 mL/min. The MS analysis was performed in the positive ion mode with monitored ion m/z 227.0814 [M + H]+ and 611.1971 [M + H]+ for soyalkaloid A and IS, respectively. The linear range was established over the concentration range 7.5–6000 ng/mL (r = 0.9951). The intra‐ and inter‐assay accuracy and precision were between ?4.86‐4.49 and 1.93–9.66, respectively. The lower limits of detection and quantitation observed were 2.1 and 7.4 ng/mL, respectively. The rapid, sensitive and specific UHPLC–ESI–Q–TOF/MS method was successfully applied to a pharmacokinetic study of soyalkaloid A. Moreover, its antioxidant was studied via a 1,1‐diphenyl‐2‐picryl‐hydrazyl radical scavenging assay, the IC50 value being 20.73 ± 0.51 μM.  相似文献   

20.
This report describes that a regular positive electrospray ionization mass spectrometry (MS) analysis of terpendoles often causes unexpected oxygen additions to form [M + H + O]+ and [M + H + 2O]+, which might be a troublesome in the characterization of new natural analogues. The intensities of [M + H + O]+ and [M + H + 2O]+ among terpendoles were unpredictable and fluctuated largely. Simple electrochemical oxidation in electrospray ionization was insufficient to explain the phenomenon. So we studied factors to form [M + H + O]+ and [M + H + 2O]+ using terpendole E and natural terpendoles together with some model indole alkaloids. Similar oxygen addition was observed for 1,2,3,4‐tetrahydrocyclopent[b]indole, which is corresponding to the substructure of terpendole E. In tandem MS experiments, a major fragment ion at m/z 130 from protonated terpendole E was assigned to the substructure containing indole. When the [M + H + O]+ was selected as a precursor ion, the ion shifted to m/z 146. The same 16 Da shift of fragments was also observed for 1,2,3,4‐tetrahydrocyclopent[b]indole, indicating that the oxygen addition of terpendole E took place at the indole portion. However, the oxygen addition was absent for some terpendoles, even whose structure resembles terpendole E. The breakdown curves characterized the tandem MS features of terpendoles. Preferential dissociation into m/z 130 suggested the protonation tendency at the indole site. Terpendoles that are preferentially protonated at indole tend to form oxygen addition peaks, suggesting that the protonation feature contributes to the oxygen additions in some degrees. © 2014 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号