首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A simple hydrophilic polyamide organic membrane protected micro‐solid‐phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005–0.010 ng/mL for water samples and 0.01–0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.  相似文献   

2.
A three‐dimensional graphene was synthesized through a hydrothermal reaction of graphene oxide with phytic acid. The microstructure and morphology of the phytic acid induced three‐dimensional graphene were investigated by nitrogen adsorption–desorption isotherms, scanning electron microscopy, and transmission electron microscopy. With a large surface area and three‐dimensional structure, the graphene was used as the solid‐phase extraction adsorbent for the extraction of phthalate esters from bottled water and sports beverage samples before high‐performance liquid chromatographic analysis. The results indicated that the graphene was efficient for the solid‐phase extraction of phthalate esters. The limits of detection (S/N = 3) of the method for the analytes were 0.02–0.03 ng/mL for the water samples and 0.03–0.15 ng/mL for the sports beverage sample. The limits of quantitation (S/N = 9) for the analytes were 0.06–0.09 ng/mL for water samples and 0.09–0.45 ng/mL for sports beverage sample. The calibration curves for the phthalate esters by the method had a good linearity from 0.1 to 80.0 ng/mL with correlation coefficients larger than 0.9997. The recoveries of the analytes for the method fell in the range of 86.7–116.2% with the relative standard deviations between 1.5 and 6.8%.  相似文献   

3.
A sensitive and rapid method based on alcohol‐assisted dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography for the determination of fluoxetine in human plasma and urine samples was developed. The effects of six parameters on the extraction recovery were investigated and optimized utilizing Plackett–Burman design and Box–Benken design, respectively. According to the Plackett–Burman design results, the volume of disperser solvent, extraction time, and stirring speed had no effect on the recovery of fluoxetine. The optimized conditions included a mixture of 172 μL of 1‐octanol as extraction solvent and 400 μL of methanol as disperser solvent, pH of 11.3 and 0% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 90.15%. The detection limit of fluoxetine in human plasma was obtained 3 ng/mL, and the linearity was in the range of 10–1200 ng/mL. The corresponding values for human urine were 4.2 ng/mL with the linearity range from 10 to 2000 ng/mL. Relative standard deviations for intra and inter day extraction of fluoxetine were less than 7% in five measurements. The developed method was successfully applied for the determination of fluoxetine in human plasma and urine samples.  相似文献   

4.
A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid–liquid microextraction based on the solidification of floating organic drops and determined by high‐performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket–Burman design and Box–Behnken design. The optimized values were: 58 μL of 1‐decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high‐performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0–1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2–0.4 and 0.1–0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples.  相似文献   

5.
In this study, QuEChERS combined with dispersive liquid‐liquid microextraction is developed for extraction of ten pesticides in complex sample matrices of water and milk. In this regard, effective factors of proposed extraction technique combined with gas chromatography with flame ionization detector were designed, modeled, and optimized using central composite design, multiple linear regression, and Nelder–Mead simplex optimization. Later, univariate calibration model for ten pesticides was developed in concentration range of 0.5–100 ng/mL. Surprisingly, quadratic calibration behavior was observed for some of the pesticides. In this regard, Mandel's test was used for evaluating linearity and types of calibration equation. Finally, four pesticides followed linear calibration curve with sensitivity (0.23–0.66 mL/ng), analytical sensitivity (0.20–0.32), regression coefficient (0.988–0.995), limit of detection (0.39–1.83 ng/mL), and limit of quantitation (1.30–6.10 ng/mL) and six of them followed quadratic calibration curve with sensitivity (0.18–0.93 mL/ng), analytical sensitivity (0.25–0.86), regression coefficient (0.944–0.999), limit of detection (0.59–1.92 ng/mL), and limit of quantitation (1.96–6.40 ng/mL). The calculated limits of detection were below the maximum residue limits according to European Union pesticides database of European Commission. Finally, the proposed analytical method was used for determination of ten pesticides in water and milk samples.  相似文献   

6.
An efficient, inexpensive and environmentally benign ultrasound‐assisted supramolecular‐solvent‐based microextraction technique combined with high‐performance liquid chromatography was used for the determination of chlorophenols in environmental water samples. Different factors such as amount of decanoic acid, volume of tetrahydrofuran, pH of the sample, ultrasound time and ionic strength were investigated and optimized. The optimized extraction conditions were 60 mg decanoic acid, 1.5 mL tetrahydrofuran, 3 min ultrasound time, without salt addition. Under this condition, the extraction recoveries were 83.0–89.3 with preconcentration factors of 94–102. The calibration curves were linear from 5.0–400.0 ng/mL with square of the correlation coefficient higher than 0.9998 and the limits of detection were between 1.5–2.0 ng/mL. The values of intra‐ and inter‐day relative standard deviations were 3.2–6.0 and 7.3–8.0%, respectively. Analysis of different samples showed that the concentration of 2,5‐dichlorophenol in Babolrood river water was 80.6 ng/mL.  相似文献   

7.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

8.
A novel design of hollow‐fiber liquid‐phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol–gel technique, was developed for the pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid‐ and liquid‐phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01–500 ng/mL and the limits of detection were in the range of 0.007–1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85–92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   

9.
In the present study, for the first time electromembrane extraction followed by high performance liquid chromatography coupled with ultraviolet detection was optimized and validated for quantification of four gonadotropin‐releasing hormone agonist anticancer peptides (alarelin, leuprolide, buserelin and triptorelin) in biological and aqueous samples. The parameters influencing electromigration were investigated and optimized. The membrane consists 95% of 1‐octanol and 5% di‐(2‐ethylhexyl)‐phosphate immobilized in the pores of a hollow fiber. A 20 V electrical field was applied to make the analytes migrate from sample solution with pH 7.0, through the supported liquid membrane into an acidic acceptor solution with pH 1.0 which was located inside the lumen of hollow fiber. Extraction recoveries in the range of 49 and 71% within 15 min extraction time were obtained in different biological matrices which resulted in preconcentration factors in the range of 82–118 and satisfactory repeatability (7.1 < RSD% < 19.8). The method offers good linearity (2.0–1000 ng/mL) with estimation of regression coefficient higher than 0.998. The procedure allows very low detection and quantitation limits of 0.2 and 0.6 ng/mL, respectively. Finally, it was applied to determination and quantification of peptides in human plasma and wastewater samples and satisfactory results were yielded.  相似文献   

10.
In the present study, we aimed to develop a method for thymol sulfate and thymol glucuronide determination in plasma, liver and duodenal wall of broiler chickens after feeding with a Thymus vulgaris essential oil at the different concentrations (0.01, 0.05 and 0.1% w /w). UHPLC coupled with accurate‐mass QTOF‐MS was used for identification and quantification of thymol metabolites. Novel Waters Oasis Prime HLB solid‐phase extraction cartridges were applied to sample clean‐up with extraction recoveries ranged from 85 to 92%. The presence of thymol glucuronide was confirmed by MS software according to molecular formula, score, mass error and double bond equivalent. In terms of validation, calibration curves of thymol sulfate were constructed in matrix samples with linearity from 3.91 to 250.0 ng/mL and correlation coefficients were within the range of 0.9979–0.9995. Limits of detection were 0.97, 0.29 and 0.63 ng/mL and limits of quantification were 3.23, 0.97 and 2.09 ng/mL for plasma, liver and duodenal wall, respectively. Intra‐day and inter‐day precision expressed as relative standard deviation were <4.35%. To highlight, thymol metabolites were directly detected for the first time in liver and duodenal wall and this method was shown to be successfully applicable for investigation of thymol metabolism in chickens after thyme essential oil ingestion.  相似文献   

11.
A new monolithic coating based on vinylpyrrolidone‐ethylene glycol dimethacrylate polymer was introduced for stir bar sorptive extraction. The polymerization step was performed using different contents of monomer, cross‐linker and porogenic solvent, and the best formulation was selected. The quality of the prepared vinylpyrrolidone‐ethylene glycol dimethacrylate stir bars was satisfactory, demonstrating good repeatability within batch (relative standard deviation < 3.5%) and acceptable reproducibility between batches (relative standard deviation < 6.0%). The prepared stir bar was utilized in combination with ultrasound‐assisted liquid desorption, followed by high‐performance liquid chromatography with ultraviolet detection for the simultaneous determination of diazepam and nordazepam in human plasma samples. To optimize the extraction step, a three‐level, four‐factor, three‐block Box–Behnken design was applied. Under the optimum conditions, the analytical performance of the proposed method displayed excellent linear dynamic ranges for diazepam (36–1200 ng/mL) and nordazepam (25–1200 ng/mL), with correlation coefficients of 0.9986 and 0.9968 and detection limits of 12 and 10 ng/mL, respectively. The intra‐ and interday recovery ranged from 93 to 106%, and the relative standard deviations were less than 6%. Finally, the proposed method was successfully applied to the analysis of diazepam and nordazepam at their therapeutic levels in human plasma. The novelty of this study is the improved polarity of the stir bar coating and its application for the simultaneous extraction of diazepam and its active metabolite, nordazepam in human plasma sample. The method was more rapid than previously reported stir bar sorptive extraction techniques based on monolithic coatings, and exhibited lower detection limits in comparison with similar methods for the determination of diazepam and nordazepam in biological fluids.  相似文献   

12.
A zirconium terephthalate metal‐organic framework‐incorporated poly(N‐vinylcarbazole‐co‐divinylbenzene) monolith was fabricated in a capillary by a thermal polymerization method. The optimized monolith had a homogeneous structure, good permeability, and stability. The monolith could be used for the effective enrichment of fungicides through π‐π interactions, electrostatic forces, and hydrogen bonds. The potential factors that affect the extraction efficiency, including ionic strength, solution pH, sample volume, and eluent volume, were investigated in detail. The monolith‐based in‐tube solid‐phase microextraction coupled with ultra‐high‐performance liquid chromatography and high‐resolution Orbitrap mass spectrometry was performed for the analysis of five fungicides (pyrimethanil, tebuconazole, hexaconazole, diniconazole, and flutriafol) in environmental samples. Under the optimized conditions, the linear ranges were 0.005–5 ng/mL for pyrimethanil, 0.01–5 ng/mL for flutriafol, and 0.05–5 ng/mL for other fungicides, respectively, with coefficients of determination ≥0.9911. The limits of detection were 1.34–14.8 ng/L. The columns showed good repeatability (relative standard deviations ≤9.3%, n = 5) and desirable column‐to‐column reproducibility (relative standard deviations 5.3–9.4%, n = 5). The proposed method was successfully applied for the simultaneous detection of five fungicides in water and soil samples, with recoveries of 90.4–97.5 and 84.0–95.3%, respectively.  相似文献   

13.
A simple, rapid, selective, accurate and precise method is described for the determination of risperidone and its active metabolite, 9‐hydroxyrisperidone, in plasma using a chemical derivative of risperidone (methyl‐risperidone) as the internal standard. The sample workup involved a single‐step extraction of 1 mL plasma, buffered to pH 10, with heptane–isoamyl alcohol (98:2 v/v), then evaporation of the heptane phase and reconstitution of the residue in mobile phase. HPLC separation was carried out at on C18 column using a mobile phase of 0.05 m dipotassium hydrogen orthophosphate (containing 0.3% v/v triethylamine) adjusted to pH 3.7 with orthophosphoric acid (700 mL), and acetonitrile (300 mL). Flow rate was 0.6 mL/min and the detection wavelength was 280 nm. Retention times were 2.6, 3.7 and 5.8 min for 9‐hydroxy risperidone, risperidone and the internal standard, respectively. Linearity in spiked plasma was demonstrated from 2 to 100 ng/mL for both risperidone and 9‐hydroxyrisperidone (r ≥ 0.999). Total imprecision was less than 13% (determined as co‐efficient of variation) and the inaccuracy was less than 12% at spiked concentrations of 5 and 80 ng/mL. The limit of detection, determined as three times the baseline noise, was 1.5 ng/mL. Clinical application of the assay was demonstrated for analysis of post‐dose (0.55–4.0 mg/day) samples from 28 paediatric patients (aged 6.9–17.9 years) who were taking risperidone orally for behavioural and emotional disorders. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   

15.
Capillary electrophoresis–electrospray tandem mass spectrometry (CE‐ESI/MS/MS) is a simple and highly sensitive method for quantifying seven urinary androgen glucuronides. The urine samples were diluted and filtered through a membrane filter, and the filtrate was injected into a CE‐MS/MS system without further sample preparation steps such as extraction and derivatization. The calibration ranges were 0.01–5 µg/mL for glucuronides of androsterone and 11β‐OHAn‐3G, and 5–500 ng/mL for glucuronides of 11‐ketoAn, DHEA, testosterone, epitestosterone and DHT. The linearity of the method was 0.992–0.998, and the limits‐of‐detection at a signal‐to‐noise ratio of 3 were 5–10 ng/mL. The coefficients of variation were in the range of 4.0–9.0% for intra‐day assay and 4.1–9.8% for inter‐day assay. The proposed method may be applicable to metabolic profiling in both quantitative and qualitative analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A new version of dispersive liquid–liquid microextraction, namely, cyclodextrin‐assisted dispersive liquid–liquid microextraction, with subsequent sweeping micellar electrokinetic chromatography has been developed for the preconcentration and sensitive detection of carbamazepine and clobazam. α‐Cyclodextrin and chloroform were used as the dispersive agent and extraction solvent, respectively. After the extraction, carbamazepine and clobazam were analyzed using micellar electrokinetic chromatography with ultraviolet detection. The detection sensitivity was further enhanced using the sweeping technique. Under optimal extraction and stacking conditions, the calibration curves of carbamazepine and clobazam were linear over a concentration range of 2.0–200.0 ng/mL. The method detection limits at a signal‐to‐noise ratio of 3 were 0.6 and 0.5 ng/mL with sensitivity enhancement factors of 3575 and 4675 for carbamazepine and clobazam, respectively. This developed method demonstrated high sensitivity enhancement factors and was successfully applied to the determination of carbamazepine and clobazam in human urine samples. The precision and accuracy for urine samples were less than 4.2 and 6.9%, respectively.  相似文献   

17.
We describe the preparation, characterization, and application of a composite film adsorbent based on blended agarose‐chitosan‐multiwalled carbon nanotubes for the preconcentration of selected nonsteroidal anti‐inflammatory drugs in aqueous samples before determination by high performance liquid chromatography with ultraviolet detection. The composite film showed a high surface area (4.0258 m2/g) and strong hydrogen bonding between the multiwalled carbon nanotubes and agarose/chitosan matrix, which prevent adsorbent deactivation and ensure long‐term stability. Several parameters, such as sample pH, addition of salt, extraction time, desorption solvent, and concentration of multiwalled carbon nanotubes in the composite film were optimized using a one‐factor‐at‐time approach. The optimum extraction conditions obtained were as follows: isopropanol as conditioning solvent, 10 mL of sample solution at pH 2, extraction time of 30 min, stirring speed of 600 rpm, 100 μL of isopropanol as desorption solvent, desorption time of 5 min under ultrasonication, and 0.4% w/v of composite film. Under the optimized conditions, the calibration curve showed good linearity in the range of 1–500 ng/mL (r2 = 0.997–0.999), and good limits of detection (0.89–8.05 ng/mL) were obtained with good relative standard deviations of < 4.59% (n = 3) for the determination of naproxen, diclofenac sodium salt, and mefenamic acid drugs.  相似文献   

18.
Chloropropanols are processing toxicants with a potential risk to human health due to the increased intake of processed foods. A rapid and efficient method for the determination of three chloropropanols in human plasma was developed using ultrasound‐assisted dispersive liquid–liquid microextraction. The method involved derivatization and extraction in one step followed by gas chromatography with tandem mass spectrometry analysis. Parameters affecting extraction, such as sample pH, ionic strength, type and volume of dispersive and extraction solvents were optimized by response surface methodology using a pentagonal design. The linear range of the method was 5–200 ng/mL for 1,3‐dichloro‐2‐propanol, 10–200 ng/mL for 2,3‐dichloro‐2‐propanol and 10–400 ng/mL for 3‐chloropropane‐1,2‐diol with the determination coefficients between 0.9989 and 0.9997. The limits of detection were in the range of 0.3–3.2 ng/mL. The precision varied from 1.9 to 10% relative standard deviation (n = 9). The recovery of the method was between 91 and 101%. Advantages such as low consumption of organic solvents and short time of analysis make the method suitable for the biomonitoring of chloropropanols.  相似文献   

19.
A sensitive, reliable and simple HPLC method was developed for the determination of lisinopril in human plasma. The method consists of extraction and clean‐up steps based on magnetic solid‐phase extraction and pre‐column derivatization with a fluorescent reagent. The mobile phase consisted of a mixture of methanol–sodium dihydrogen phosphate (pH 3.0; 0.005 m ; 75:25, v/v). The flow rate was set at 0.7 mL/min. Fluorescence detection was performed at 470nm excitation and 530nm emission wavelengths. Total chromatography run time was 5 min. The average extraction recovery of lisinopril and fluvoxamine (internal standard) was ≥82.8%. The limits of detection and quantification were determined as 1 and 3 ng/mL respectively. The method exhibited a linear calibration line over the concentration range of 3–1000 ng/mL with coefficient of determination (r2) of ≥0.98. The within‐run and between‐run precisions were satisfactory with values of CV of 1.8–12.8% (accuracy from 99.2 to 94.7%) and 2.4–13.7% (accuracy from 99.5 to 92.2%), respectively. These developments led to considerable improvement in method sensitivity and reliability. The method was validated according to the US Food and Drug Administration guidelines. Therefore, it can be considered as a suitable method for determination of lisinopril in plasma samples.  相似文献   

20.
A novel, simple, and inexpensive analytical technique based on flat sheet supported liquid membrane microextraction coupled with fast Fourier transform stripping cyclic voltammetry on a reduced graphene oxide carbon paste electrode was used for the extraction and online determination of diclofenac in whole blood. First, diclofenac was extracted from blood samples using a polytetrafluoroethylene membrane impregnated with 1‐octanol and then into an acceptor solution, subsequently it was oxidized on a carbon paste electrode modified with reduced graphene oxide nanosheets. The optimal values of the key parameters influencing the method were as follows: scan rate, 6 V/s; stripping potential, 200 mV; stripping time, 5 s; pH of the sample solution, 5; pH of the acceptor solution,7; and extraction time, 240 min. The calibration curves were plotted for the whole blood samples and the method was found to have a good linearity within the range of 1–25 μg/mL with a determination coefficient of 0.99. The limits of detection and quantification were 0.1 and 1.0 μg/mL, respectively. Using this coupled method, the extraction and determination were merged into one step. Accordingly, the speed of detection for sensitive determination of diclofenac in complex samples, such as blood, increased considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号