首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A facile and effective approach to preparation of dual‐responsive magnetic core/shell composite microspheres is reported. The magnetite(Fe3O4)/poly(methacrylic acid) (PMAA) composite microspheres were synthesized through encapsulating γ‐methacryloxypropyltrimethoxysilane (MPS)‐modified magnetite colloid nanocrystal clusters (MCNCs) with crosslinked PMAA shell. First, the 200‐nm‐sized MCNCs were fabricated through solvothermal reaction, and then the MCNCs were modified with MPS to form active vinyl groups on the surface of MCNCs, and finally, a pH‐responsive shell of PMAA was coated onto the surface of MCNCs by distillation‐precipitation polymerization. The transmission electron microscopy (TEM) and vibrating sample magnetometer characterization showed that the obtained composite microspheres had well‐defined core/shell structure and high saturation magnetization value (35 emu/g). The experimental results indicated that the thickness and degree of crosslinking of PMAA shell could be well‐controlled. The pH‐induced change in size exhibited by the core/shell microspheres reflected the PMAA shell contained large amount of carboxyl groups. The carboxyl groups and high saturation magnetization make these microspheres have a great potential in biomolecule separation and drug carriers. Moreover, we also demonstrated that other magnetic polymeric microspheres, such as Fe3O4/PAA, Fe3O4/PAM, and Fe3O4/PNIPAM, could be synthesized by this approach. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

2.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   

3.
Dual functions of magnetic and fluorescent properties were created in composite particles that incorporated magnetite (Fe3O4) nanoparticles in particle cores of silica and fluorescent pyrene in particle shells of polystyrene. The Fe3O4 nanoparticles were prepared with a conventional homogeneous precipitation method and surface modified with a coupling agent of carboxyethylsilanetriol. The silica particles incorporating Fe3O4 nanoparticles were synthesized with a modified Stöber method in which the Fe3O4 nanoparticles were added to a system of tetraethylorthosilicate (TEOS)/ammonia/water/ethanol. Then, the magnetite/silica composite particles were coated with the pyrene/polystyrene shell in a soap-free emulsion polymerization, which was conducted in the presence of pyrene in a mixed solvent of water/ethanol. The composite particles prepared in the mixed solvent had both magnetic and fluorescent properties. The fluorescent spectrum of the particles with Fe3O4 was very similar to that without Fe3O4, indicating that the magnetic component within the core particles scarcely interfered with the fluorescent emission from the polymer shell.  相似文献   

4.
Hierarchical Fe3O4@poly(4‐vinylpyridine‐co‐divinylbenzene)@Au (Fe3O4@P(4‐VP–DVB)@Au) nanostructures were fabricated successfully by means of a facile two‐step synthesis process. In this study, well‐defined core–shell Fe3O4@P(4‐VP–DVB) microspheres were first prepared with a simple polymerization method, in which 4‐VP was easily polymerized on the surface of Fe3O4 nanoparticles by means of strong hydrogen‐bond interactions between ? COOH groups on poly(acrylic acid)‐modified Fe3O4 nanoparticles and a 4‐VP monomer. HAuCl4 was adsorbed on the chains of a P(4‐VP) shell and then reduced to Au nanoparticles by NaBH4, which were embedded into the P(4‐VP) shell of the composite microspheres to finally form the Fe3O4@P(4‐VP–DVB)@Au nanostructures. The obtained Fe3O4@P(4‐VP–DVB)@Au catalysts with different Au loadings were applied in the reduction of 4‐nitrophenol (4‐NP) and exhibited excellent catalytic activity (up to 3025 h?1 of turnover frequency), facile magnetic separation (up to 31.9 emu g?1 of specific saturation magnetization), and good durability (over 98 % of conversion of 4‐NP after ten runs of recyclable catalysis and almost negligible leaching of Au).  相似文献   

5.
The first synthesis of porous, optically active, magnetic Fe3O4@poly(N‐acryloyl‐leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3O4 NPs. The microspheres integrate three significant concepts, “porosity”, “chirality”, and “magneticity”, in one single microspheric entity. The microspheres consist of Fe3O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV‐vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g–1 and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc.

  相似文献   


6.
Magnetic silica‐coated magnetite (Fe3O4) sub‐microspheres with immobilized metal‐affinity ligands are prepared for protein adsorption. First, magnetite sub‐microspheres were synthesized by a hydrothermal method. Then silica was coated on the surface of Fe3O4 particles using a sol–gel method to obtain magnetic silica sub‐microspheres with core‐shell morphology. Next, the trichloro(4‐chloromethylphenyl) silane was immobilized on them, reacted with iminodiacetic acid (IDA), and charged with Cu2+. The obtained magnetic silica sub‐microspheres with immobilized Cu2+ were applied for the absorption of bovine hemoglobin (BHb) and the removal of BHb from bovine blood. The size, morphology, and magnetic properties of the resulting magnetic micro(nano) spheres were investigated by using scanning microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and a vibrating sample magnetometer (VSM). The measurements showed that the magnetic sub‐microspheres are spherical in shape, very uniform in size with a core‐shell, and are almost superparamagnetic. The saturation magnetization of silica‐coated magnetite (Fe3O4) sub‐microspheres reached about 33 emu g?1. Protein adsorption results showed that the sub‐microspheres had a high adsorption capacity for BHb (418.6 mg g?1), low nonspecific adsorption, and good removal of BHb from bovine blood. This opens a novel route for future applications in removing abundant proteins in proteomic analysis.  相似文献   

7.
吴国章 《高分子科学》2011,29(5):580-585
A novel method for preparation of polymer-based magnetic microspheres was proposed by utilizing melt reactive blending,which was based on selective location of Fe_3O_4 nanoparticles in PA6 domains of polystyrene(PS)/polyamide 6 (PA6) immiscible blends.The morphology of PA6/Fe_3O_4 composite magnetic microspheres was studied by scanning electronic microscopy(SEM).The composite magnetic microspheres were spherical with a diameter range of 0.5-8μm;the diameter was sharply decreased with a very narrow distri...  相似文献   

8.
《Solid State Sciences》2012,14(10):1550-1556
The thermal decomposition approach, reverse micro-emulsion system and surface modification technique had been successfully used to synthesis single magnetic core Fe3O4@Organic Layer@SiO2–NH2 complex microspheres. The magnetization of the magnetic microspheres core could be easily tuned between 28 and 56 emu/g by adjusting the amount of 2-mercaptobarbituric acid. It was found that the Organic Layer to some extent had a protective effect on avoiding Fe3O4 being oxidized into Fe2O3. Each Fe3O4@Organic Layer microsphere could be coated uniformly by about 30 nm of silica shell. The average diameter of the Fe3O4@Organic Layer@SiO2 composites was about 538 nm. The saturation magnetization of the Fe3O4@Organic Layer@SiO2 complex microspheres was 12.5% less than magnetic microspheres cores. The Fe3O4@Organic Layer@SiO2–NH2 composites possessed a huge application potentiality in specificity enriching and separating biological samples.  相似文献   

9.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

10.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40 nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83 A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

11.
免疫磁性纳米微球的制备与表征   总被引:1,自引:0,他引:1  
王斌 《化学通报》2015,78(9):847-850
成功制备了Fe3O4磁性纳米颗粒及二甲基丙烯酸乙二醇酯-甲基丙烯酸(EGDMA-MAA)共聚物包覆的Fe3O4磁性复合微球。将吲哚美辛抗体固定在复合微球表面,形成了Fe3O4(核)/聚合物-抗体(壳)的复合免疫磁性颗粒。XRD结果表明,制备的Fe3O4的晶型为反立方尖晶石型且纯度较高;TEM表征表明Fe3O4粒径较为均匀,平均粒径为12nm;磁性复合微球的平均直径为460nm。制备的Fe3O4磁性纳米颗粒和磁性复合微球有较强的磁响应强度,其饱和磁化率分别为49.16和8.38emu/g,能够满足磁性分离的要求。FT IR验证了磁性复合微球中羧基特征峰的存在,表明羧基成功连接在磁性微球上面。通过碳二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)活化法将微球表面羧基活化并成功与抗吲哚美辛抗体交联。  相似文献   

12.
Iron oxide@Poly(Glycidylmethacrylate‐methyl methacrylate‐divinyl benzene) magnetic composite core shell microspheres Fe3O4@P(GMA‐MMA‐DVB) with epoxy group on the surface was designed and synthesized by solvothermal process followed by distillation polymerization. The surface epoxy group was modified with amino group of ethylene diamine (EDA) to prepare Fe3O4@P(GMA‐MMA‐DVB)/NH2 microspheres, and then effects of modification on the structure, interfacial behavior and hence demulsification of the amino modified epoxy coating were examined. The prepared magnetic microspheres were characterized using a laser particle size analyzer, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and thermogravimetric analysis. Fourier transform infrared spectrometer analysis indicates the presence of epoxy group, amino group and Fe3O4 in the final Fe3O4@P(GMA‐MMA‐DVB) and Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres. Our experimental results show that Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres exhibit good interfacial and demulsification properties and able to remove emulsified water from stable emulsion. The resulting microspheres showed excellent magnetic properties and further these can be recycled and reused by magnetic separation.  相似文献   

13.
A protein imprinting approach for the synthesis of core–shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation–precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface‐modified with 3‐(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high‐density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross‐linking agent N,N′‐methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g?1) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as‐prepared Fe3O4@Lyz‐MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz‐MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g?1) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz‐MIP could selectively extract a target protein from real egg‐white samples under an external magnetic field.  相似文献   

14.
Three‐dimensional (3D) flowerlike hierarchical Fe3O4@Bi2O3 core–shell architectures were synthesized by a simple and direct solvothermal route without any linker shell. The results indicated that the size of the 3D flowerlike hierarchical microspheres was about 420 nm and the shell was composed of several nanosheets with a thickness of 4–10 nm and a width of 100–140 nm. The saturation magnetization of the superparamagnetic composite microspheres was about 41 emu g?1 at room temperature. Moreover, the Fe3O4@Bi2O3 composite microspheres showed much higher (7–10 times) photocatalytic activity than commercial Bi2O3 particles under visible‐light irradiation. The possible formation mechanism was proposed for Ostwald ripening and the self‐assembled process. This novel composite material may have potential applications in water treatment, degradation of dye pollutants, and environmental cleaning, for example.  相似文献   

15.
Xin Wang  Xiwen He  Langxing Chen 《Talanta》2009,78(2):327-3403
In this study, we synthesized Fe3O4 magnetic nanoparticles coated estrone-imprinted polymer with controlled size using a semi-covalent imprinting strategy. In this protocol, the estrone-silica monomer complex (EstSi) was synthesized by the reaction 3-(triethoxysilyl)propyl isocyanate with estrone, where the template was linked to the silica coating on the iron oxide core via a thermally reversible bond. The removal of the template by a simple thermal reaction produced specific estrone recognition sites on the surface of silica shell.The resulting estrone-imprinted polymer coating Fe3O4 magnetic hybrid nanoparticles exhibit a much higher specific recognition and saturation magnetization. The hybrid nanoparticles have been used for biochemical separation of estrone.  相似文献   

16.
A facile and efficient strategy for the synthesis of hierarchical yolk–shell microspheres with magnetic Fe3O4 cores and dielectric TiO2 shells has been developed. Various Fe3O4@TiO2 yolk–shell microspheres with different core sizes, interstitial void volumes, and shell thicknesses have been successfully synthesized by controlling the synthetic parameters. Moreover, the microwave absorption properties of these yolk–shell microspheres, such as the complex permittivity and permeability, were investigated. The electromagnetic data demonstrate that the as‐synthesized Fe3O4@TiO2 yolk–shell microspheres exhibit significantly enhanced microwave absorption properties compared with pure Fe3O4 and our previously reported Fe3O4@TiO2 core–shell microspheres, which may result from the unique yolk–shell structure with a large surface area and high porosity, as well as synergistic effects between the functional Fe3O4 cores and TiO2 shells.  相似文献   

17.
Micron‐sized monodisperse superparamagnetic polyglycidyl methacrylate (PGMA) particles with functional amino groups were prepared by a process involving: (1) preparation of parent monodisperse PGMA particles by the dispersion polymerization method, (2) chemical modification of the PGMA particles with ethylenediamine (EDA) to yield amino groups, and (3) impregnation of iron ions (Fe2+ and Fe3+) inside the particles and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O4) nanoparticles within the polymer particles. The resultant magnetic PGMA particles with amino groups were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffractometry (XRD), and vibrating sample magnetometry (VSM). SEM showed that the magnetic particles had an average size of 2.6 μm and were highly monodisperse. TEM demonstrated that the magnetite nanoparticles distributed evenly within the polymer particles. The existence of amino groups in the magnetic polymer particles was confirmed by FTIR. XRD indicated that the magnetic nanoparticles within the polymer were pure Fe3O4 with a spinel structure. VSM results showed that the magnetic polymer particles were superparamagnetic, and saturation magnetization was found to be 16.3 emu/g. The Fe3O4 content of the magnetic particles was 24.3% based on total weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3433–3439, 2005  相似文献   

18.
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles.  相似文献   

19.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

20.
A method applying soap-free emulsion polymerization with an amphoteric initiator, 2,2′-azobis[N-(2-carboxyethyl)-2-2-methyl-propionamidine], is proposed for synthesis of highly monodisperse particles composed of magnetic nanoparticles (Fe3O4/γ–Fe2O3) and polystyrene. The magnetic nanoparticles were pretreated by surface modification for introducing double bonds onto the particles. In the polymerization, magnetic nanoparticles were continuously supplied to the system for a certain period after the initiation of polymerization at various pH. Dissociation degrees of ionizable groups in the initiator molecules were controlled through pH by changing NH3 concentrations at a constant NH4Cl concentration. Selection of suitable pH in the polymerization could produce polymer particles that perfectly incorporated the supplied magnetic nanoparticles. The magnetic polymer particles had a coefficient of variation of size distribution as low as 4.3% with an average diameter of 515 nm and a saturation magnetization of 7.3 emu/g-sample. Electrophoresis measurements indicated that the magnetic polymer particles had an isoelectric point of pH 4.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号