首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Introduction of α-cyano α,β-unsaturated carbonyl moiety into natural cyclic compounds markedly improves their bioactivities, including inhibitory potential against tumor growth and metastasis. Previously, we showed that cyano enone-bearing derivatives of 18βH-glycyrrhetinic (GA) and deoxycholic acids displayed marked cytotoxicity in different tumor cell lines. Moreover, GA derivative soloxolone methyl (SM) was found to induce ER stress and apoptosis in tumor cells in vitro and inhibit growth of carcinoma Krebs-2 in vivo. In this work, we studied the effects of these compounds used in non-toxic dosage on the processes associated with metastatic potential of tumor cells. Performed screening revealed SM as a hit compound, which inhibits motility of murine melanoma B16 and human lung adenocarcinoma A549 cells and significantly suppresses colony formation of A549 cells. Further study showed that SM effectively blocked transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition (EMT) of A549 cells: namely, inhibited TGF-β-stimulated motility and invasion of tumor cells as well as loss of their epithelial characteristics, such as, an acquisition of spindle-like phenotype, up- and down-regulation of mesenchymal (vimentin, fibronectin) and epithelial (E-cadherin, zona occludens-1 (ZO-1)) markers, respectively. Network pharmacology analysis with subsequent verification by molecular modeling revealed that matrix metalloproteinases MMP-2/-9 and c-Jun N-terminal protein kinase 1 (JNK1) can be considered as hypothetical primary targets of SM, mediating its marked anti-EMT activity. The inhibitory effect of SM on EMT revealed in vitro was further confirmed in a metastatic model of murine B16 melanoma: SM was found to effectively block metastatic dissemination of melanoma B16 cells in vivo, increase expression of E-cadherin and suppress expression of MMP-9 in lung metastatic foci. Altogether, our data provided valuable information for a better understanding of the antitumor activity of cyano enone-bearing semisynthetic compounds and revealed SM as a promising anti-metastatic drug candidate.  相似文献   

2.
Microalgae is a rich source of polyunsaturated fatty acid. This study was conducted to identify and isolate microalgal strain with the potentials for producing polyunsaturated fatty acids (PUFAs) and determine its cytotoxic effect on some cancer cells. The algal strain (Chlorella sp. S14) was cultivated using modified BG-11 media, and algal biomass obtained was used for fatty acid extraction. Gas chromatographic–mass spectrometry was used to identify and quantify the levels of the fatty acid constituents. The total content of monounsaturated fatty acids (1.12%) was low compared to polyunsaturated fatty acids (PUFAs) (52.87%). Furthermore, n-3 PUFAs accounted for (12.37%) of total PUFAs with the presence of α-linolenic acid (2.16%) and cis-11,14,17-eicosatrienoic acid (2.16%). The PUFA-rich extract did not exhibit a cytotoxic effect on normal cells. Treatment with the PUFA-rich extract (150 µg/mL) significantly reduced cell viability in MCF-7 (31.58%) and A549 (62.56%) cells after the 48 h treatment. Furthermore, treatment of MCF-7 with fatty acid extracts (125 and 150 µg/mL) showed a significant reduction in MDA levels, increase in catalase activities and decrease in GSH level compared to untreated cells. However, a slight decrease in MDA level was observed in A549 cells after the 48 h treatment. There are no significant changes in catalase activities and GSH level in treated A549 cells. However, a slight reduction of NO levels was observed in treated MCF-7 and A549 cells. These results indicate the potentials of PUFA-rich extracts from Chlorella sp. S14 to reduce viability and modulate redox status in A549 and MCF-7 cells.  相似文献   

3.
Ten new hybrids were designed and synthesized, their chemical structures were confirmed through spectral and elemental analysis. The new hybrids were screened against lung, breast and liver cancer cell lines (A549, MCF7 and Hep3B), in addition to normal fibroblast cells. Compound 13a was the most active and selective one on the lung cancer cell line (A549), its IC50 and S.I. values were 2.4 µM and 83.2, respectively. Compound 14b was active on MCF7 with the best selectivity towards this cell line. The new derivatives were screened for their inhibitory activity against COX enzymes, the obtained results revealed that compound 13a and 14b were more active inhibitors for COX-2 than celecoxib. This finding encourages us to consider COX-2 inhibitory activity as a proposed mechanism for their anticancer activity.  相似文献   

4.
A series of benzofuropyrazoles 2a-i were synthesized in 10-92% from the reaction of 2-aroylbenzofuran-3-ols 1a-i with hydrazine hydrate, and screened for their antitumor activities toward four human solid tumor cell lines, including gastric carcinoma cells MKN45, hepatocellular carcinoma cells HepG2, breast cancer cells MCF-7, and lung cancer cells A549. The results indicated that both compounds 1a-i and 2a-i displayed moderate antitumor activities. Among them, compound 2e exhibited potent inhibitory activity toward all the four tumor cell lines. In addition, compounds 1e and 2e showed strong DNA-binding affinities, and induced an increase in the viscosity of calf-thymus DNA, suggesting that they might act as an intercalator.  相似文献   

5.
Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.  相似文献   

6.
Novel allyl palladium compounds stabilized by carbohydrate-based N-heterocyclic carbenes (NHCs) were prepared and characterized by nuclear magnetic resonance, high-resolution mass spectrometry and elemental analysis. The antiproliferative activity of the compounds was tested on a panel of different tumor lines, especially ovarian cancer and MRC-5 human lung fibroblasts (nontumor cells). These experiments showed that both mixed NHC/PPh3 and NHC/PTA (PTA = 1,3,5-triaza-7-phosphaadamantane) allyl complexes have IC50 (half maximal inhibitory concentration) values comparable and sometimes even significantly lower than cisplatin. Moreover, the mixed NHC/PTA allyl complexes exhibit good activity toward the seven tumor lines tested with a substantial inactivity against normal cells, a necessary condition to avoid the general cytotoxicity of a metallo-drug. Furthermore, this subclass of compounds proved particularly active on the A549 lung cancer tumor line (up to 100-fold more cytotoxic than cisplatin) and exhibited satisfactory cytotoxicity against KURAMOCHI and OVCAR3 cell lines, which are currently considered the best in vitro models for serous ovarian cancer, the most lethal tumor for women worldwide.  相似文献   

7.
In this study, we examined aqueous extracts of the edible mushrooms Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom). Proteome analysis was conducted using LC-Triple TOF-MS and showed the expression of 753 proteins by Pleurotus ostreatus, and 432 proteins by Lentinula edodes. Bioactive peptides: Rab GDP dissociation inhibitor, superoxide dismutase, thioredoxin reductase, serine proteinase and lectin, were identified in both mushrooms. The extracts also included promising bioactive compounds including phenolics, flavonoids, vitamins and amino acids. The extracts showed promising antiviral activities, with a selectivity index (SI) of 4.5 for Pleurotus ostreatus against adenovirus (Ad7), and a slight activity for Lentinula edodes against herpes simplex-II (HSV-2). The extracts were not cytotoxic to normal human peripheral blood mononuclear cells (PBMCs). On the contrary, they showed moderate cytotoxicity against various cancer cell lines. Additionally, antioxidant activity was assessed using DPPH radical scavenging, ABTS radical cation scavenging and ORAC assays. The two extracts showed potential antioxidant activities, with the maximum activity seen for Pleurotus ostreatus (IC50 µg/mL) = 39.46 ± 1.27 for DPPH; 11.22 ± 1.81 for ABTS; and 21.40 ± 2.20 for ORAC assays. This study encourages the use of these mushrooms in medicine in the light of their low cytotoxicity on normal PBMCs vis à vis their antiviral, antitumor and antioxidant capabilities.  相似文献   

8.
A series of novel glycosyl nitrogen‐containing heterocycles derivatives were designed and synthesized. With the help of microwave, the reaction was carried out in water rapidly and afforded the target compounds in good yields. The acid catalysts that were essential for this kind of reaction under traditional heating method were avoided through this strategy. Preliminary biological evaluation showed that most of the compounds could inhibit the growth of A549 cells, but the inhibition of HepG‐2 cells was relatively poor. Notably, compound 2i displayed the best potency with an IC50 value of 3.42 μM against A549 cell lines, which is comparable with the common anticarcinogen paclitaxel (5.12 μM). Molecular modeling studies suggested that 2i may bind to the ATP‐binding site of epidermal growth factor receptor (EGFR), indicating a rational design strategy. These results provide a starting point for designing glycosyl nitrogen‐containing heterocycles as the potential drugs in lung cancer therapy.  相似文献   

9.
Herein, we sought to evaluate the contribution of the 1,3,5-triazine ring through the metformin cyclization unit to the biological activity of magnolol and honokiol-conjugates. One of the phenolic OH groups of magnolol or honokiol was replaced by a 1,3,5-triazine ring to further explore their synthesis and medicinal versatility. In this study, a robust procedure of three steps was adopted for the synthesis of magnolol and honokiol derivatives by alkylation of potassium carbonate with a 1,3,5-triazine ring. To our knowledge, this is the first report to connect one of the phenolic OH positions of magnolol or honokiol to a 1,3,5-triazine ring cyclized by metformin. The structural characterization of three new compounds was carried out via spectroscopic techniques, i.e., 13C NMR, 1H NMR, and HRMS. Surprisingly, these compounds showed no cytotoxicity against RAW 264.7 macrophages but significantly inhibited the proliferation of MCF-7 (human breast cancer cells), HepG2 (human hepatoma cells), A549 (human lung carcinoma cells), and BxPC-3 (human pancreatic carcinoma cells) tumor cell lines. Furthermore, the compounds also significantly inhibited the release of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the lipopolysaccharide (LPS)-activated mouse cells (RAW 264.7). Among them, compound 2 demonstrated promising broad-spectrum antiproliferative potential with half inhibitory concentration (IC50) values ranging from 5.57 to 8.74 µM and it significantly decreased caspase-3 and Bcl-2 expression in HepG2 cells. These interesting findings show that derivatization of magnolol and honokiol with 1,3,5-triazine affects and modulates their biological properties.  相似文献   

10.
对向海雁鹅血抗肺癌的活性成分、潜在作用靶点及信号通路进行研究,并应用分子对接技术探索其抗肺癌可能的作用机制。利用高效液相色谱-质谱联用技术(HPLC-MS/MS)分析向海雁鹅血活性物质的成分;采用网络药理学筛选靶点,分析信号通路,构建向海雁鹅血活性物质“成分-靶点-通路”网络;利用细胞增殖检测(CCK-8)细胞活力测定法检测向海雁鹅血提取物对4种人癌细胞活力影响;运用分子对接核心靶点与向海雁鹅血活性成分;实时定量聚合酶链反应检测(qPCR)检测向海雁鹅血提取物对人肺癌A549细胞p-AKT1的mRNA表达的影响。结果分析出Pro、H-Asn-Asp-Asp-Met-OH、Thr-Thr-Asn-Tyr-Thr-Asp、和Ala-Trp-Met-Asp-Phe-Val 4种向海雁鹅血活性成分;获得相关靶点258个,其中核心靶点46个;GO基因富集分析涉及AKT1、IL1BS、SRC等关键靶点;KEGG信号通路富集涉及癌症信号通路等;向海雁鹅血提取物对4种人癌细胞的细胞活力均有抑制,其中对人肺癌A549细胞的抑制效果最明显;向海雁鹅血活性成分的核心靶点与肺癌靶点相映射结果显示是通过AKT1、IL1BS、SRC等关键靶点起到抑制A549的作用;分子对接结果显示:H-Asn-Asp-Asp-Met-OH与ATK1的结合能最高;qPCR检测结果显示,向海雁鹅血提取物能够显著减低A549细胞p-AKT1的mRNA的含量水平。向海雁鹅血活性物质通过多靶点、多通路的形式诱导人肺癌A549细胞凋亡,为向海雁鹅血抗肺癌的活性物质研究与开发提供了新的思路和方向。  相似文献   

11.
Abstract

Diphenyl-4-thioxo-1,4-dihydropyrimidin-5-yl)ethan-1-one 4 was obtained upon the reaction of (phenylamino)but-2-enethioyl)benzamide 3 with sodium hydroxide. The reactions of 4 with several active species such as benzaldehyde, urea, malononitrile, ethyl cyanoacetate, hydrazine, and carbon disulfide were studied. The antitumor activities of some selective compounds were examined against two cell lines: Mammalian cell lines: A-549 cells (human lung cancer cell line) and MRC-5 cells (normal human lung fibroblast cell line); some of the compounds were highly efficient; compound 13 has the most effective anticancer activity.  相似文献   

12.
TNF-related apoptosis-inducing ligand (TRAIL/Apo- 2L), a newly identified member of the TNF family promotes apoptosis by binding to the transmembrane receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL known to activate NF-kappaB in number of tumor cells including A549 (wt p53) and NCI-H1299 (null p53) lung cancer cells exerts relatively selective cytotoxic affects to the human tumor cell lines without much effect on the normal cells. We set out to identify an agent that would sensitize lung cancer cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. We found that triptolide, an oxygenated diterpene extracted and purified from the Chinese herb Tripterygium wilfordii sensitized A549 and NCI-H1299 cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. Pretreatment with MG132 which is a well-known NF-kappaB inhibitor by blocking degradation of IkappaBalpha also greatly sensitized lung cancer cells to TRAIL-induced apoptosis. Triptolide did not block DNA binding of NF-kappaB activated by TRAIL as in the case of TNF-alpha. It has been already proven that triptolide blocks transactivation of p65 which plays a key role in NF-kappaB activation. These observations suggest that triptolide may be a potentially useful drug to enhance TRAIL-induced tumor killing in lung cancer.  相似文献   

13.
A series of 30 non-covalent imidazo[1,2-a]quinoxaline-based inhibitors of epidermal growth factor receptor (EGFR) were designed and synthesized. EGFR inhibitory assessment (against wild type) data of compounds revealed 6b, 7h, 7j, 9a and 9c as potent EGFRWT inhibitors with IC50 values of 211.22, 222.21, 193.18, 223.32 and 221.53 nM, respectively, which were comparable to erlotinib (221.03 nM), a positive control. Furthermore, compounds exhibited excellent antiproliferative activity when tested against cancer cell lines harboring EGFRWT; A549, a non-small cell lung cancer (NSCLC), HCT-116 (colon), MDA-MB-231 (breast) and gefitinib-resistant NSCLC cell line H1975 harboring EGFRL858R/T790M. In particular, compound 6b demonstrated significant inhibitory potential against gefitinib-resistant H1975 cells (IC50 = 3.65 μM) as compared to gefitinib (IC50 > 20 μM). Moreover, molecular docking disclosed the binding mode of the 6b to the domain of EGFR (wild type and mutant type), indicating the basis of inhibition. Furthermore, its effects on redox modulation, mitochondrial membrane potential, cell cycle analysis and cell death mode in A549 lung cancer cells were also reported.  相似文献   

14.
Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK.  相似文献   

15.
A series of substituted aminomethylbenzocoumarin derivatives 8a–i have been synthesized, characterized, and structure of compound 8g was confirmed by X‐ray single crystal analysis. All the synthesized compounds were tested for their anticancer activity against cancer cell lines A549 (lung carcinoma cell line), MCF7 (breast cancer cell line), and A375 (melanoma cell line). Compounds 8a , 8f , and 8h showed excellent growth inhibitory activity against all three cell lines, respectively. Compounds 8a and 8f were also found to be quite promising at very low concentration as an anticancer agent against MCF7 and A549 cell lines. Compounds 8g and 8i showed excellent antimitotic activity with IC50 0.32 and19.98 nM for A549 cell line.  相似文献   

16.
An efficient synthetic method for 1,8-dioxo-decahydroacridines derivatives bearing the biologically active sulfonamide moiety is described. Aromatic aldehyde reacted with 5,5-dimethyl-1,3-cyclohexanedione and sulfanilamide, with molecular iodine as catalyst, to give 1,8-dioxo-decahydroacridines derivatives in high to excellent yield. The structures of these compounds were established on the basis of elemental (C, H and N) and spectral analysis (1H NMR, 13C NMR, MS and FTIR). All the compounds were tested for their cytotoxic activity in vitro against three human tumor cell lines: human mammary cancer cells (MCF-7), human cervical carcinoma cells (Hela), and human lung cancer cells (A549) by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most of them showed moderate to potent cytotoxic activity against the tested cell lines. Among them, the most active compound 4e exhibited more efficient activity (10.92 μM) against MCF-7 cells than cisplatin (11.06 μM).  相似文献   

17.
A series of novel 2-hydrazinyl-4-morpholinothieno[3,2-d]pyrimidine derivatives was designed and synthesized.All of them were screened for their cytotoxic activities against large cell lung cancer(H460),colon cancer (HT-29) and adenocarcinomic lung cancer(A549) cell lines in vitro.The pharmacological results indicate that most of the target compounds show moderate to significant activities.Especially compound 17 exhibits the most potent antitumor activities against H460,HT-29 and A549 cell lines with IC50 values of 0.57,0.45 and 1.45 μmol/L,respectively.  相似文献   

18.
Background: Pomgranate (Punica granatum) represents a high source of polyphenols with great bioavailability. The role of this fruit in the prevention and treatment of various malignant pathologies has been long time cited in both scientific and non-scientific literature, making thus important to identify its involvement in the pathophysiological processes. The treatment for breast cancer had focused on the inhibition of the mechanisms that governs the estrogen activity. These mechanisms are covered either by the antagonism of the estrogen receptor (ER) or by the inhibition of the estrogen synthesis. Our interest in identifying a bioactive compound rich in polyphenols, which induces both the antagonism of the estrogen receptor, and the inhibition of the estrogen synthesis, revealed us the pomegranate fruit and its derivatives: peel and seeds. Pomegranates’ chemical composition include many biological active substances such as flavonols, flavanols, anthocyanins, proanthocyanidins, ellagitannins and gallotannins. Materials and Methods: We performed a review of the scientific literature by using the following keywords: “pomegranate”, “breast cancer”, “Punica granatum”, “pomegranate polyphenols”. Our search was performed in the PubMed and Google Scholar databases, and it included only original research written in English from the last 20 years. None of the articles were excluded due to affiliation. A total number of 28 original papers, which mentioned the beneficial activity of pomegranate against breast cancer, were selected. Both clinical and preclinical studies were considered for this review. Results: Recent discoveries pointed out that polyphenols from Punica granatum possess strong anti-cancer activity, exhibited by a variety of mechanisms, such as anti-estrogenic, anti-proliferative, anti-angiogenetic, anti-inflammatory, and anti-metastatic. Pomegranate extracts induced cell cycle arrest in the G0/G1 phase, and induced cytotoxicity in a dose- and time-dependent manner. Moreover, several polyphenols extracted from pomegranate inhibited the invasion potential, migration and viability of breast cancer cells. The effects of pomegranate juice on serum estrogens and other sexual hormones levels were also investigated on two human cohorts. Conclusions: Punica granatum represents a promising area in oncology. The large availability and low cost, associated with the lack of side effects, made from this natural product a great strategy for the management of breast cancer. There are several mechanistic studies in mouse models and in breast cancer cell lines, suggesting the possible pathways through which polyphenols from pomegranate extracts act, but larger and better-controlled studies are necessary in the future. Only two small clinical trials were conducted on humans until now, but their results are contradictory and should be considered preliminary.  相似文献   

19.

Based on the structural elements of bioactive 3-substituted indoles, a new series of indole–thiosemicarbazone hybrid derivatives were designed, synthesized, and well-characterized using different spectral techniques. The intended scaffolds were screened for their in vitro anti-proliferative activities against breast cancer (MCF-7), lung cancer (A-549), and liver cancer (Hep-G2) cell lines, as well as their anti-oxidant properties. Cytotoxicity studies revealed that compound 6n was the most potent, at least threefold more potent than the commercially available reference drug etoposide, against A-549. In addition, morphological analysis by the acridine orange/ethidium bromide double staining test and flow cytometry analysis confirmed induction of apoptosis in the A-549 cells by compound 6n. In order to validate the experimental results, molecular studies were performed to achieve the possible binding interactions of the most potent compound (6n) and colchicine with tubulin as well as ANP with ATPase domain of topoisomerase IIα active sites. Moreover, the radical scavenging potential of the final derivatives was found to be excellent with the range of 0.015–0.630 µM, comparable to the standard ascorbic acid (0.655 µM).

  相似文献   

20.
Novel 6-bromo-coumarin-ethylidene-hydrazonyl-thiazolyl and 6-bromo-coumarin-thiazolyl-based derivatives were synthesized. A quantitative structure activity relationship (QSAR) model with high predictive power r2 = 0.92, and RMSE = 0.44 predicted five compounds; 2b, 3b, 5a, 9a and 9i to have potential anticancer activities. Compound 2b achieved the best ΔG of –15.34 kcal/mol with an affinity of 40.05 pki. In a molecular dynamic study 2b showed an equilibrium at 0.8 Å after 3.5 ns, while flavopiridol did so at 0.5 Å after the same time (3.5 ns). 2b showed an IC50 of 0.0136 µM, 0.015 µM, and 0.054 µM against MCF-7, A-549, and CHO-K1 cell lines, respectively. The CDK4 enzyme assay revealed the significant CDK4 inhibitory activity of compound 2b with IC50 of 0.036 µM. The selectivity of the newly discovered lead compound 2b toward localization in tumor cells was confirmed by a radioiodination biological assay that was done via electrophilic substitution reaction utilizing the oxidative effect of chloramine-t. 131I-2b showed good in vitro stability up to 4 h. In solid tumor bearing mice, the values of tumor uptake reached a height of 5.97 ± 0.82%ID/g at 60 min p.i. 131I-2b can be considered as a selective radiotheranostic agent for solid tumors with promising anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号