首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe3O4@SiO2-MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe3O4@SiO2-MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe3O4@SiO2-MPS, Fe3O4@SiO2-MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe3O4@SiO2-MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe3O4@SiO2-MPS@PDES-MSPE method in separation of biomolecules.  相似文献   

2.
In this study, the synthesis of sulfonic acid supported on ferrite–silica superparamagnetic nanoparticles (Fe3O4@SiO2@SO3H) as a nanocatalyst with large density of acidic groups is suggested. This nanocatalyst was prepared in three steps: preparation of colloidal iron oxide magnetic nanoparticles (Fe3O4 MNPs), coating of silica on Fe3O4 MNPs (Fe3O4@SiO2) and incorporation of sulfonic acid as a functional group on the surface of Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2@SO3H). The properties of the prepared magnetic nanoparticles were characterized using transmission electron microscopy, infrared spectroscopy, vibrating sample magnetometry, X‐ray diffraction and thermogravimetric analysis. Finally, the applicability of the synthesized magnetic nanoparticles was tested as a heterogeneous solid acid nanocatalyst for one‐pot synthesis of diindolyloxindole derivatives in aqueous medium. Oxindole derivatives were produced by the coupling of indole and isatin compounds with good to high yields (60–98%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
β-Blockers and β2-agonists are commonly prescribed for therapeutic treatments and are also administered to livestock, leading to their presence in both environmental and biological samples. Hence, the development of sensitive, rapid, and reliable analytical methods for the determination of β-blockers and β2-agonists in environmental and biological samples is important. In this study, MIL-101(Cr)-NH2&GO-coated SiO2/Fe3O4 magnetic particles were prepared as sorbents for magnetic solid-phase extraction and then combined with high-performance liquid chromatography-tandem mass spectrometry for the analysis of 20 β-blockers and eight β2-agonists. The experimental parameters of magnetic solid-phase extraction were studied in detail, and the optimal conditions were established. Under optimal conditions, the limits of detection were in the range of 0.002–0.007 μg/L with enrichment factors of 20.2–24.9. The developed method was successfully applied for the determination of 20 β-blockers and eight β2-agonists in river water, human urine, and freeze-dried pork liver powder. Bisoprolol and salbutamol were detected at concentrations of 2.78 mg/L in human urine and 11.5 μg/kg in freeze-dried pork liver powder.  相似文献   

4.
We report a simple process for the synthesis of Fe3O4@SiO2/APTMS (APTMS = 3‐aminopropyltrimethoxysilane) core–shell nanocatalyst support. The new nanocatalyst was prepared by stabilization of Pd(cdha)2 (cdha = bis(2‐chloro‐3,4‐dihydroxyacetophenone)) on the surface of the Fe3O4@SiO2/APTMS support. The structure and composition of this catalyst were characterized using various techniques. An efficient method was developed for the synthesis of a wide variety of biaryl compounds via fluoride‐free Hiyama cross‐coupling reactions of aryl halides with arylsiloxane, with Fe3O4@SiO2/APTMS/Pd(cdha)2 as the catalyst under reaction conditions. This methodology can be performed at 100°C through a simple one‐pot operation using in situ generated palladium nanoparticles. High catalytic activity, quick separation of catalyst from products using an external magnetic field and use of water as green solvent are attributes of this protocol.  相似文献   

5.
A novel armor-type composite of metal–organic framework (MOF)-encapsulated CoCu nanoparticles with a Fe3O4 core (Fe3O4@SiO2-NH2-CoCu@UiO-66) has been designed and synthesized by the half-way injection method, which successfully serves as an efficient and recyclable catalyst for the selective transfer hydrogenation. In this half-way injection approach, the pre-synthetic Fe3O4@SiO2-NH2-CoCu was injected into the UiO-66 precursor solution halfway through the MOF budding period. The formed MOF armor could play a role of providing significant additional catalytic sites besides CoCu nanoparticles, protecting CoCu nanoparticles, and improving the catalyst stability, thus facilitating the selective transfer hydrogenation of nitrobenzaldehydes into corresponding nitrobenzyl alcohols in high selectivity (99 %) and conversion (99 %) rather than nitro group reduction products. Notably, this method achieves the precise assembly of a MOF-encapsulated composite, and the ingenious combination of MOF and nanoparticles exhibits excellent catalytic performance in the selective hydrogen transfer reaction, implementing a “1+1>2” strategy in catalysis.  相似文献   

6.
A simple method, air‐assisted dispersive micro‐solid‐phase extraction‐based supramolecular solvent was developed for the preconcentration of tramadol in biological samples prior to gas chromatography–flame ionization detection. A new type of carrier liquid, supramolecular solvent based on a mixture of 1‐dodecanol and tetrahydrofuran was combined with layered double hydroxide coated on a magnetic nanoparticle (Fe3O4@SiO2@Cu–Fe–LDH). The supramolecular solvent was injected into the solution containing Fe3O4@SiO2@Cu–Fe–LDH in order to provide high stability and dispersion of the sorbent without any stabilizer agent. Air assisted was applied to enhance the dispersion of the sorbent and solvent. A number of analytical techniques such as Fourier transform‐infrared spectrometry, field emission scanning electron microscope, energy‐dispersive X‐ray spectroscopy and X‐ray diffraction measurements were applied to assess the surface chemical characteristics of Fe3O4@SiO2@Cu–Fe–LDH nanoparticles. The effects of important parameters on the extraction recovery were also investigated. Under optimized conditions, the limits of detection and quantification were obtained in the range of 0.9–2.4 and 2.7–7.5 μg L?1 with preconcentration factors in the range of 450–472 in biological samples. This method was used for the determination of tramadol in biological samples (plasma, urine and saliva samples) with good recoveries.  相似文献   

7.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

8.
A multifunctional nanomaterial (Fe3O4@SiO2@CX@NH2) comprising a magnetic core, a silicon protective interlayer, and an amphiphilic silica shell is successfully prepared. Ru nanoparticles catalyst loaded on Fe3O4@SiO2@CX@NH2 is used in hydrogenation of α‐pinene for the first time. The novel nanomaterial with amphipathy can be used as a solid foaming agent to increase gas–liquid–solid three‐phase contact and accelerate the reaction. Under the mild conditions (40 °C, 1 MPa H2, 3 h), 99.9% α‐pinene conversion and 98.9% cis‐pinane selectivity are obtained, which is by far the best results reported. Furthermore, the magnetic nanocomposite catalyst can be easily separated by an external magnet and reused nine times with high selectivity maintaining.  相似文献   

9.
The sulfhydryl-functionalised core-shell Fe3O4@SiO2 magnetic nanoparticles (Fe3O4@SiO2–RSH MNPs)-based dispersive solid-phase extraction method was developed. The goal of this method is the extraction of mercury species from natural water samples. An interesting aspect of the method is that, thanks to the spontaneously aggregate, the MNPs with a sub-30-nm-size range could be fast and efficiently extracted by 0.45 μm pore size mixed cellulose esters membrane filter. Thus, the elution step can be conducted by passing small amounts eluent through the MNPs on the membrane. It is also found that addition of Ag+ to water sample could improve the elution efficiency, and furthermore, minimises the matrix effects during the extraction of mercury species from natural water samples. The feasibility of the method was studied, and extraction efficiency was evaluated. The results showed that, calculated at 5 ng/L spiked concentration levels, absolute recoveries were 89.4%, 91.9% and 64.2%, and enrichment factors (EFs) were 596, 613 and 428, for inorganic mercury, methylmercury and ethylmercury, respectively. The high EFs were achieved in 5 min of overall extraction time. The method was applied to groundwater and river water samples. The results showed that its suitability for use in fast extracting trace levels of mercury species from natural water samples.  相似文献   

10.
In this paper, a mild and green protocol has been developed for the synthesis of quinazoline derivatives. The catalytic activity of 7‐aminonaphthalene‐1,3‐disulfonic acid‐functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2@Propyl–ANDSA) was investigated in the one‐pot synthesis of new derivatives of tetrahydrotetrazolo[1,5‐a]quinazolines and tetrahydrobenzo[h]tetrazolo[5,1‐b]quinazolines from the reaction of aldehydes, 5‐aminotetrazole, and dimedone or 6‐methoxy‐3,4‐dihyronaphtalen‐1(2H)‐one at 100 °C in H2O/EtOH as the solvent. The catalyst was characterized before and after the organic reaction. Fe3O4@SiO2@Propyl–ANDSA showed remarkable advantages in comparison with previous methods. Advantages of the method presented here include easy purification, reusability of the catalyst, green and mild procedure, and synthesis of new derivatives in high yields within short reaction time.  相似文献   

11.
A type of fluorescent–magnetic dual‐function nanocomposite, Fe3O4@SiO2@P‐2, was successfully obtained by Cu+‐catalyzed click reaction between acetylene (C?C? H)‐substituted carbazole‐based conjugated polymer ( P‐2) and azide‐terminated silica‐coated magnetic iron oxide nanoparticles (Fe3O4@SiO2–N3). Optical and magnetization analyses indicate that Fe3O4@SiO2@P‐2 exhibits stable fluorescence and rapid magnetic response. The fluorescence of Fe3O4@SiO2@P‐2 was quenched significantly in the presence of I? and gave a detection limit (DL) of ~8.85 × 10?7 M. Given the high binding constant and matching ratio between Hg2+ and I?, the fluorescence of Fe3O4@SiO2@P‐2/I? complex recovered efficiently with the addition of Hg2+. A DL of ~4.17 × 10?7 M was obtained by this probing system. Recycling of Fe3O4@SiO2@P‐2 probe was readily achieved by simple magnetic separation. Results indicate that Fe3O4@SiO2@P‐2 can be used as an “on–off–on” fluorescent switchable and recyclable Hg2+ probe. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3636–3645  相似文献   

12.
Over bimetallic Au/Cu catalyst supported on magnetic Fe3O4 nanoparticles, water-mediated bromamine acid could be selectively converted into 4,4'-diamino-1,1'-dianthraquinonyl-3,3'-disulfonic acid (DAS) with a yield of 88.67%. The magnetic catalyst could be readily separated and reused.  相似文献   

13.
Supported palladium catalyst (Pd/Fe3O4@SiO2) was easily prepared by supporting PdCl2 on silica‐coated magnetic nanoparticles Fe3O4 in ethylene glycol. The as‐prepared sample was characterized by infrared spectroscopy (IR), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS). The formation of active specie Pd(0) was confirmed by XRD and XPS, and the Pd loading for the fresh and recovered catalyst was determined by atomic absorption spectroscopy (AAS). Pd/Fe3O4@SiO2 was employed for the synthesis of biphenyl derivatives via Suzuki reaction. In terms of the yield of biphenyl, the supported catalyst displayed nearly equal catalytic performance to that of homologous PdCl2 under microwave irradiation for 30 min but higher than that obtained by traditional heating method for 12 h. The catalytic performance of Pd/Fe3O4@SiO2 for Suzuki reactions involving various aryl halides and arylboronic acids were also examined. Impressive yield of biphenyl at 68.2% was obtained even in the presence of unreactive aryl chlorides. Pd/Fe3O4@SiO2 was recovered by a permanent magnet and directly reused in the next run, and no obvious deactivation was observed for up to 6 times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, a new magnetic hybrid nanomaterials Fe3O4@SiO2@PPh3@Cr2O72− is introduced. First, the magnetic Fe3O4 nanoparticles have been synthesized by co-precipitation method. Then, tetraethyl orthosilicate has been used for production of core–shell nanoparticles Fe3O4@SiO2. The core–shell magnetic nanoparticles system Fe3O4@SiO2 functionalization was synthesized using (3-chloropropyl) trimethoxysilane and triphenylphosphine and the cationic part was prepared for immobilization of anionic part of the Cr (VI) catalysts including Cr2O72−. After immobilization of the catalyst, its structure was detected by using Fourier transform infrared (FT-IR), solid state UV–Vis, elemental analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD) and the particle size and morphology were elaborated by scanning electron microscope (SEM) and XRD. Magnetism properties were quantified by vibrating sample magnetometer (VSM).  相似文献   

15.
Novel Pd nanoparticles were prepared in five successive stages: 1) preparation of the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs), 2) coating of Fe3O4 MNPs with SiO2 (Fe3O4@SiO2), 3) functionalization of Fe3O4@SiO2 with 3‐chloropropyltrimethoxy‐ silane (CPTMS) ligand (Fe3O4@SiO2@CPTMS), 4) further functionalization with 3,5‐diamino‐1,2,4‐triazole (DAT) ligand (Fe3O4@SiO2@CPTMS @DAT), and 5) the complexation of Fe3O4@SiO2@CPTMS@DAT with PdCl2 (Fe3O4@SiO2@CPTMS@ DAT@Pd). Then, the obtained Pd nano‐catalyst characterized by different methods such as the elemental analysis (CHN), FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA and VSM. Finally, the Pd catalyst was applied for the synthesis of various 2‐imino‐3‐phenyl‐2,3‐dihydrobenzo[d]oxazol‐5‐ols.  相似文献   

16.
Urea was successfully immobilized on the surface of chloropropyl‐modified Fe3O4@SiO2 core–shell magnetic nanoparticles, then supported by MgBr2 and acts as a unique catalyst for oxidation of benzylic alcohols to aldehydes and ketones, and ortho‐formylation of phenols to salicylaldehydes. The prepared catalyst was characterized by FT‐IR, transmission electron microscopy, scanning electron microscopy, X‐ray powder diffraction, dispersive X‐ray spectroscopy, CHN and TGA. It was found that Fe3O4@SiO2 ~ urea/MgBr2 showed higher catalytic activity than homogenous MgBr2, and could be reused several times without significant loss of activity.  相似文献   

17.
Ti (IV)-modified vinyl phosphate magnetic nanoparticles (Fe3O4@SiO2@KH570-PO4-Ti (IV)) was prepared for simultaneous extraction of multiple arsenic species, followed by high performance liquid chromatography (HPLC)– inductively coupled plasma mass spectrometry (ICP-MS) analysis. Inorganic arsenic (iAs), dimethyl arsenic acid (DMA), monomethyl arsenic acid (MMA), p-amino phenyl arsenic acid (p-ASA), 4-hdroxyphenylarsenic acid (4-OH), phenyl arsenic acid (PAA), and 3-nitro-4-hydroxyphenylarsenic acid (ROX) were investigated as interest analytes. It was found that they were quantitatively adsorbed on Fe3O4@SiO2@KH570-PO4-Ti (IV) at pH 5, and desorbed completely with 0.1 mol/L sodium hydroxide solution. Enrichment factor of 100-fold was obtained by consuming 100 mL sample solution. Under the optimal conditions, the method combining MSPE with HPLC-ICP-MS presented a linear range of 1–5000 ng/L for seven arsenic species. The limits of detection were 0.39, 0.60, 0.23, 1.85, 0.54, 0.48, and 0.84 ng/L for DMA, MMA, p-ASA, iAs, 4-OH, PAA, ROX, with the relative standard deviations (c = 10 ng/L, n = 7) of 3.6, 3.9, 5.5, 12.4, 6.1, 5.8, 5.0, respectively. The accuracy of the method was validated by analyzing BCR 627 Tuna fish. The application potential of the method was further evaluated by chicken muscle and liver samples. No target arsenic species were detected in these samples, and good recoveries (80.6–123%) were obtained for the spiked samples at low, medium, and high concentration levels.  相似文献   

18.
Butane‐1‐sulfonic acid immobilized on magnetic Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2‐Sultone) was easily prepared via direct ring opening of 1,4‐butanesultone with nanomagnetic Fe3O4@SiO2. The prepared reagent was characterized and used for the efficient promotion of the synthesis of barbituric acid and pyrano[2,3‐d] pyrimidine derivatives. All reactions were performed under mild and completely heterogeneous reaction conditions affording products in good to high yields. The catalyst is easily isolated from the reaction mixture by magnetic decantation and can be reused at least eight times without significant loss in activity.  相似文献   

19.
SiO2‐coated Fe3O4 (Fe3O4@SiO2) nanocomposites were prepared by sol–gel method, and the anticorrosion performance of composite coatings was discussed. The structure of the Fe3O4@SiO2 nanocomposites was verified through Fourier transform infrared, X‐ray diffraction, and scanning electron microscopy. Composite epoxy coatings with same concentrations of Fe3O4 and Fe3O4@SiO2 were measured by scanning electron microscopy contact angle meter. More importantly, the Fe3O4@SiO2 nanocomposites not only obtained a homogeneous dispersion and compatibility in epoxy resin but also exhibited an obvious superiority in enhancing the anticorrosion performance of epoxy coatings. Furthermore, the anticorrosion mechanism of Fe3O4@SiO2/epoxy composite coating was tentatively discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A Cu(II) complex supported on Fe3O4@SiO2 core–shell magnetic nanoparticles (MNPs) was prepared and characterized by FT-IR, XRD, SEM, EDX, TEM, VSM, TGA, and AAS analysis. The load of Cu on picolinimidoamide ligand anchored on Fe3O4@SiO2 core–shell MNPs was determined as 1.22, 1.54, and 1.70 wt% using AAS, EDX and TGA analyses, respectively. Synthesized Cu(II) complex on Fe3O4@SiO2 MNPs efficiently catalyzed a click reaction between alkyl halides, alkynes, and sodium azide to synthesize corresponding triazoles in high to excellent yields. The catalyst was recovered using an external magnetic field, and recycled for subsequent reactions without substantial loss of efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号