首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The structure of single crystals of the NV-4 nickel alloy containing 32–36 wt % W is investigated. The temperature gradient at the crystallization front and the velocity of the crystallization front are the variable parameters of directional crystallization. The degrees of structural perfection of the single crystals grown under different conditions are compared. The crystallization parameters providing growth of single crystals that have high structural perfection and can be successfully used as seeds for the growth of single-crystal blades are determined. Typical defects formed upon directional crystallization of single crystals of the Ni-W (35 wt %) alloy are examined. The studied defects are classified, and the factors responsible for the disturbance of the single-crystal structure are analyzed.  相似文献   

2.
Initial stages of SiC crystal growth by Physical Vapor Transport method were investigated. The following features were observed: (a) many nucleation crystallization centres appeared on the seed surface during the initial stage of the growth, (b) at the same places many separate flat faces generated on the crystallization front, (c) the number of facets was dependent on the shape of the crystallization front and decreased during growth, (d) appearance of many facets lead to decrease of structural quality of crystals due to degradation of regions where crystallization steps from independent centres met. The results revealed that the optimal crystallization front should be slightly convex, which permits the growth of crystals with single nucleation centre and evolution of single facet on the crystallization front. The subjects of study were the shape and the morphology of growth interface. Defects in the crystallization fronts and wafers cut from the crystals were studied by optical microscopy, atomic force microscopy (AFM) combined with KOH etching and X‐ray diffraction. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Germanosillenite (BGO) crystals have been grown by the low thermal gradient Czochralski technique [1] at crystallization rates of v = 0.05–4 mm/h. The evolution regularities of the faceted front forms have been studied taking into consideration their growth conditions (crystallization rate and thermal conditions). The orientations of the faces forming the crystallization front during crystal growth in the 〈111〉 direction have been determined. The relationship between the front morphology (and, therefore, growth conditions) and the quality of crystals formed is established. The quality of the BGO crystals grown is evaluated by X-ray topography.  相似文献   

4.
Numerical investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium garnet crystals in the same thermal zone and comparison of the obtained results with the experimental data have been performed. It is shown that the difference in the behavior of the crystallization front during growth of the crystals is related to their different transparency in the IR region. In gadolinium gallium garnet crystals, which are transparent to thermal radiation, a crystallization front, strongly convex toward the melt, is formed in the growth stage, which extremely rapidly melts under forced convection. Numerical analysis of this process has been performed within the quasistationary and nonstationary models. At the same time, in terbium gallium garnet crystals, which are characterized by strong absorption of thermal radiation, the phase boundary shape changes fairly smoothly and with a small amplitude. In this case, as the crystal is pulled, the crystallization front tends to become convex toward the crystal bulk.  相似文献   

5.
The reproducibility of biomacromolecular crystallization (tetragonal and orthorhombic lysozyme crystals) was studied by monitoring the evolution of protein concentration during the crystallization process using Mach‐Zehnder interferometer. It was found that formation of both tetragonal and orthorhombic crystals exhibited poor reproducibility. When the crystallization occurred under isothermal conditions, the protein concentration in the solution varied differently in different experiments under identical conditions (for both types of crystals). Moreover, in the case of orthorhombic lysozyme crystallization (under either isothermal or thermal gradient conditions), it is clear that the crystals could not be always readily formed. When formation of tetragonal lysozyme crystals was conducted at a temperature gradient condition, however, the evolution of concentration was reproducible. The phenomena found in this study revealed that biomacromolecular crystallization can be uncertain, which is probably caused by the process of nucleation. Such uncertainties will be harmful for the efforts of screening crystallization conditions for biomacromolecules. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
A mathematical model of the formation of primary grown-in microdefects on the basis of dissociation diffusion is presented. Cases of “vacancy-oxygen” (V + O) and “carbon-interstitial” (C + I) interaction near the crystallization front are considered for dislocation-free Si single crystals grown by the floating-zone and Czochralski methods. The approximate analytical expressions obtained by setting 1D and 2D temperature fields in a crystal are in good agreement with the heterogeneous mechanism of formation of grown-in microdefects.  相似文献   

7.
Crystallography Reports - The effect of crystallization front shape on the dislocation density in Ge single crystals with a diameter of 100 mm, grown by the Czochralski method, has been studied....  相似文献   

8.
The heat transfer processes occurring in the solid and liquid phases during growth of Bi12GeO20 and Bi4Ge3O12 crystals by the low-thermal gradient Czochralski method are analyzed and compared. It is experimentally found that, under similar growth conditions, the deflection of the crystallization front for the Bi12GeO20 crystal is considerably smaller than the deflection of the crystallization front for the Bi4Ge3O12 crystal and the faceting of the former front is observed at the earlier stage of pulling. The results of the numerical simulation demonstrate that the different behavior of the crystallization fronts is associated with the difference between the coefficients of thermal absorption in the crystals.  相似文献   

9.
The results of three‐dimensional unsteady modeling of melt turbulent convection with prediction of the crystallization front geometry in liquid encapsulated Czochralski growth of InP bulk crystals and vapor pressure controlled Czochralski growth of GaAs bulk crystals are presented. The three‐dimensional model is combined with axisymmetric calculations of heat and mass transfer in the entire furnace. A comprehensive numerical analysis using various two‐dimensional steady and three‐dimensional unsteady models is also performed to explore their possibilities in predicting the melt/crystal interface geometry. The results obtained with different numerical approaches are analyzed and compared with available experimental data. It has been found that three‐dimensional unsteady consideration of heat and mass transfer in the crystallization zone provides a good reproduction of the solidification front geometry for both GaAs and InP crystal growth.  相似文献   

10.
Single crystals in the shapes of plates, tubes and rods of various cross sections are widely used in many areas of science and technology. Of great importance is the production of such single crystal specimens directly from the melt. By Stepanov's method, the desired shape of the crystal is obtained by the proper selection of a device which shapes the melt column which rises due to the capillary effect. The capillary parameters determine the shape of the profile curve. The thermal parameters, taking into account the equilibrium crystal shape, define the position and shape of the crystallization front. The use of the shaper makes the process self-stabilizing. A negative feedback which damps out perturbations appears in the crystal-melt system and thus permits the production of controlled profile crystals with constant cross-section along their length. Thermoelastic stresses created in ribbons and rods as a result of temperature-induced misfit deformations are considered. The generation of dislocations in crystals occurs mainly due to stresses arising near the crystallization front. Various versions of the method and their applications to some materials are discussed.  相似文献   

11.
The dielectric properties of potassium dihydrophosphate single crystals, which were grown from crystallization solutions at different pH, have been studied. The dielectric response of the single crystals is shown to vary substantially depending on the growth conditions and can be significantly different for samples from different growth sectors of the same single crystals and even within one sector. The results of this study are useful for optimizing the growth conditions of these single crystals.  相似文献   

12.
We report on the use of alternating crystallization for deposition of layers of different (though closely related) proteins in a single crystal. Investigations were carried out with the unique protein couple consisting of two forms of ferritin, apoferritin and holoferritin from horse spleen, which, despite being of quite different molecular masses, still possess identical organic shells. Crystals of both proteins were used as substrates for subsequent contiguous growth of the partner protein in perfect alignment. We observed continuous growth of combined (onion‐like) single crystals; artificial structures of biological macromolecules can be designed in this way. The homoepitaxial layered growth shows in an unambiguous way that protein crystallization depends only on the surface protein conformation and amino‐acid composition, but not on the internal molecule structure. The limitations of protein crystal growth for designing layered structures of biological macromolecules were revealed by growing of heterogeneous protein crystals onto pre‐existing protein crystalline substrates. Tetragonal crystals of hen egg‐white lysozyme were grown onto cubic apoferritin crystals used as substrates. It was observed that the lysozyme crystals were not lattice‐matched to the ‘host’ apoferritin crystals; this led to mere aggregates of different crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This paper reports on the results of precision X-ray structural investigations of KTiOPO4 single crystals grown by one method (crystallization from a solution in the melt) in two variants (the spontaneous formation of crystallization centers or top-seeded solution growth during slow cooling of saturated solution melts). It is shown that spontaneous flux crystallization leads to the formation of a larger number of defects. Potassium atoms are found to be disordered. The splitting of the K1 and K2 potassium positions is equal to 0.347(4) and 0.279(3) Å, respectively, for the crystals grown by the top-seeded solution method and 0.308(5) and 0.321(4) Å, respectively, for the crystals grown through the spontaneous flux crystallization.  相似文献   

14.
The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.  相似文献   

15.
A comprehensive analysis is implemented concerning the growth, properties, and applications of doped-co-doped single and mixed alkali earth fluoride systems. Calcium-strontium fluoride solid solutions with a Sr content proportion varying widely between 0.007 and 0.675 mol.% are obtained as a batch of axis-symmetrical boules grown by a Bridgman-Stockbarger (BS) method. The crystallization front (CF) can be controlled to retain a convex CF-shape that is favourable for normal growth of single crystals. This achieved using a broad adiabatic furnace zone (AdZ) independently of the boules’ composition. The influence of the thermal field distribution on the CF and the real crystallization rate (CR), which are both critically decisive in controlling crystal quality, were originally assessed using empirically derived formulas. The optical characteristics of the grown boules were monitored by measuring the external transmittance t and calculating the total losses following light irradiation of optical windows that were prepared from sections of the boules that had been cut parallel to one another. The t-measurements were performed by two different techniques and the comparative analysis of the results reliably indicates any inhomogeneity in the grown boules. A simple supercooling criterion proved to closely relate the morphological stability of the CF enabling one to set up the optimum growth conditions. Thus the normal growth criterion outlines the concentration bounds where the isotropic growth mechanism is replaced by cellular anisotropic growth. A procedure has been established for provisioning researchers with optical quality calcium-strontium fluoride crystals with widely varying composition grown under practically identical conditions. As a consequence one can explore possible reasons that can affect the growth mechanism for this or any other systems with a fluoride structure and so provide scope aimed at the future improvement of the crystal quality thereby enlarging the field of mixed fluoride systems’ applications.  相似文献   

16.
This paper reports on the results obtained during the development of the technological process of growth of sapphire crystals for optoelectronics through horizontal directional crystallization in a gaseous argon medium at a pressure of 800 mmHg. The sapphire crystals intended for the use in optoelectronics have been grown from purified molten alumina according to the authors’ technology. It has been demonstrated that, under conditions of a high temperature gradient across the crystallization front and at a low content of reducing components (H2, CO) in the growth medium, it is possible to grow sapphire crystals satisfying the requirements of optoelectronics.  相似文献   

17.
A series of potassium titanyl phosphate single crystals doped with zinc (KTP: Zn) is grown by spontaneous flux crystallization. Their properties and the way the additive is implanted in the crystal lattice are studied. The inclusion of zinc atoms in the KTP structure is evidenced by the data of chemical analysis and the results of studies of electrophysical properties (the growth of conductivity and increase of relaxation anomalies). Precision X-ray diffraction studies of KTP: Zn single crystals reveal changes in the channel of the structure which correlate with the physical properties of this crystal series. No substitution of zinc atoms for titanium, phosphorus, or potassium atoms is found in the structure. Zinc atoms can be located at structural defects, domain walls, and the crystal surface.  相似文献   

18.
19.
A modified system of Mansfield equations with different step propagation rates to the right and left was applied to describe the shape of solution-grown single crystals of long-chain alkanes with asymmetrically curved faces ?ub;110?ub;. Solution of this system of equations and simulation of the shape of single crystals of polyethylene, α-polyvinylidene fluoride, and polyethylene oxide shows good agreement with the experimental data. Comparison of the simulated shapes and experimental micrographs makes it possible to determine the ratio of the intensity of secondary nucleation to the average propagation rate of the layer as well as the ratio of the rates of lateral steps to the right and left and to calculate the absolute values of the main crystallization parameters when the growth rates of single crystals in certain directions are known. It is shown that the asymmetry of the step propagation rate to the right and left is significant only for crystallization at very small supercoolings.  相似文献   

20.
The curvature of faces of polymer single crystals is described by the system of Mansfield equations, which is based on the Frank-Seto growth model. This model assumes the velocity of nucleus steps to be the same for their propagation to the right and left and is valid only for symmetric crystallographic planes. To describe the shape of polyethylene oxide single crystals grown from melt and limited by the {100} and {120} folding planes, it is assumed that the layer velocities to the right and left are different on {120} faces. This approach allows modeling, with a high accuracy, of the observed shapes of polymer single crystals grown at different temperatures, which makes it possible to determine unambiguously the fundamental crystallization parameters: the dimensionless ratio of the secondary homogeneous nucleation rate to the average velocities of nuclei along the crystallization planes and the ratio of nucleus velocities to the right and left. In addition, it was found that a known macroscopic single-crystal growth rate can be used to determine the absolute values of the secondary homogeneous nucleation rate and the velocities of nuclei along the growth plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号