首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了激光散射法测量颗粒尺寸系统的工作原理和标定结果,并对液体环轴对称抛撒进行了光学测量。实验结果表明,液体环二次破碎产生云雾区的液滴Sauter平均直径在固定点随时间的增加呈减小的趋势,而云雾区的宽度和云雾区前缘的液滴颗粒的Sauter平均直径则随测量的距离增加均有所增加。  相似文献   

2.
The primary breakup of airblast atomization is governed by complex mechanisms and is still not well understood. In recent years high speed shadowgraphy experiments and Direct Numerical Simulations of prefilming airblast atomization have been performed independently. In this paper detailed results of a combined experimental and numerical study are presented. A single operating point of a planar prefilming airblast atomizer is investigated, based on a spatial resolution of 10 µm and a consistent analysis of the liquid film in both the experimental and the numerical studies. For the analysis the three-dimensional DNS data is projected on a plane, corresponding to the data obtained by shadowgraphy. The experiment is characterized by back light illumination in conjunction with particle and ligament tracking velocimetry. A Depth of Field correction is applied to further improve the measurement accuracy. For the numerical investigation the embedded DNS approach is utilized: The primary breakup region is simulated with a highly resolved DNS, embedded in a coarser Large Eddy Simulation. The comparison comprises a phenomenological discussion of the disintegration process and quantitative results. Distributions for the breakup length, the liquid film deformation velocity, the droplet sizes and velocities are presented. The results are in good agreement and confirm the applicability of the embedded DNS and the particle and ligament tracking velocimetry for the analysis of the primary breakup of airblast atomization. This work also shows the intrinsic limitation of a diffusive interface technique as the results depend on the filtering parameter of the diffuse interface.  相似文献   

3.
This experimental study is devoted to the influence of the air and liquid thicknesses on an air-blasted atomizer. The flow configuration corresponds to a planar liquid sheet sheared on both sides by two high velocity airflows. Using planar laser induced fluorescence, back lighting visualizations and light diffraction, flapping frequency, breakup length of the liquid sheet and droplet sizes resulting from the atomization process are measured. The results show that the influence of each fluid thickness depends on the investigated flow characteristic. Thus, breakup length is strongly correlated to liquid flow rate, whereas flapping frequency depends mainly on airflow conditions, characterized by the vorticity thickness. Concerning final droplet sizes, both previous parameters must be taken into account, leading to a correlation based on breakup length and oscillation frequency.  相似文献   

4.
The main objective of this research is to study analytically and experimentally the liquid sheet breakup of a flat fan jet nozzle resulting from pressure-swirling. In this study the effects of nozzle shape and spray pressure on the liquid sheet characteristics were investigated for four nozzles with different exit widths (1.0, 1.5, 2.0 and 2.5 mm). The length of liquid sheet breakup, liquid sheet velocity and the size of formed droplets were measured by a digital high speed camera. The breakup characteristics of plane liquid sheets in atmosphere are analytically investigated by means of linear and nonlinear hydrodynamic instability analyses. The liquid sheet breakup process was studied for initial sinuous and also varicose modes of disturbance. The results presented the effect of the nozzle width and the spray pressure on the breakup length and also on the size of the formed droplets. Comparing the experimental results with the theoretical ones for all the four types of nozzles, gives a good agreement with difference ranges from 4% to 12%. Also, the comparison between the obtained results and the results due to others shows a good agreement with difference ranged from 5% to 16%. Empirical correlations have been deduced describing the relation between the liquid sheet breakup characteristics and affecting parameters; liquid sheet Reynolds number, Weber number and the nozzle width.  相似文献   

5.
Parametric study on the fuel film breakup of a cold start PFI engine   总被引:3,自引:0,他引:3  
In order to provide more insight on improving the cold start fuel atomization for reducing unburned hydrocarbon emissions, the liquid fuel film breakup phenomenon in the intake valve/port region was investigated in depth for port-fuel-injected engines. Experiments were conducted using high-speed high-resolution imaging techniques to visualize the liquid film atomization and airflow patterns in an axisymmetric steady flow apparatus. The impact of valve/port seat geometry, surface roughness, and fuel properties on airflow separation and fuel film breakup were determined through a parametric study. CFD simulations were also performed with FLUENT to help understand the airflow behavior inside the intake port and valve gap region and its potential impact on fuel film atomization.  相似文献   

6.
激波诱导气流与液幕、液柱相互作用的实验研究   总被引:1,自引:1,他引:0  
利用激波管对激波诱导气流与液幕、液柱的相互作用进行了实验研究。通过比较发现,这种相互作用下的液体块变形破碎过程与以往对于液滴进行的研究结果很不相同。当激波与液幕相互作用时,阴影照片和直接照相都表明,液幕的变形破碎行为有很强的三维性,较之液滴的变形破坏机理更为复杂,并且在局部区域,初始时刻液幕破碎抛撒的速度相较激波诱导气流速度为快,本文应用一维变截面激波管理论对这一现象进行了理论分析。  相似文献   

7.
The atomization of liquids into a spray is an important process in many industrial applications and particularly in the aero-engine sector. Conventional air-blast injectors in aircraft engines today use aerodynamic shearing effects to atomize the liquid fuel. However, at operating conditions where the air velocity is below 30 m/s (such as ground start and high altitude restart) the atomization quality is poor. Consequently combustion is less efficient with high pollutant emissions. The objective of this study is to validate a new concept of injector which couples the shearing effects with the principle of ultrasonic atomization. The latter consists of using piezoelectric actuators to generate the oscillations of a wall in contact with the liquid film. This excitation perpendicular to the liquid film surface creates Faraday instabilities at the liquid/air interface. Amplitudes higher than a defined threshold value induce the break-up of ligaments and the formation of droplets. To cite this article: M. Boukra et al., C. R. Mecanique 337 (2009).  相似文献   

8.
In a flow-blurring (FB) injector, atomizing air stagnates and bifurcates at the gap upstream of the injector orifice. A small portion of the air penetrates into the liquid supply line to create a turbulent two-phase flow. Pressure drop across the injector orifice causes air bubbles to expand and burst thereby disintegrating the surrounding liquid into a fine spray. In previous studies, we have demonstrated clean and stable combustion of alternative liquid fuels, such as biodiesel, straight vegetable oil and glycerol by using the FB injector without requiring fuel pre-processing or combustor hardware modification. In this study, high-speed visualization and time-resolved particle image velocimetry (PIV) techniques are employed to investigate the FB spray in the near field of the injector to delineate the underlying mechanisms of atomization. Experiments are performed using water as the liquid and air as the atomizing gas for air to liquid mass ratio of 2.0. Flow visualization at the injector exit focused on a field of view with physical dimensions of 2.3 mm × 1.4 mm at spatial resolution of 7.16 µm per pixel, exposure time of 1 µs, and image acquisition rate of 100 k frames per second. Image sequences illustrate mostly fine droplets indicating that the primary breakup by FB atomization likely occurs within the injector itself. A few larger droplets appearing mainly at the injector periphery undergo secondary breakup by Rayleigh–Taylor instabilities. Time-resolved PIV is applied to quantify the droplet dynamics in the injector near field. Plots of instantaneous, mean, and root-mean-square droplet velocities are presented to reveal the secondary breakup process. Results show that the secondary atomization to produce fine and stable spray is complete within a few diameters from the injector exit. These superior characteristics of the FB injector are attractive to achieve clean combustion of different fuels in practical systems.  相似文献   

9.
In this paper we present a numerical model for the coarse-grid simulation of turbulent liquid jet breakup using an Eulerian–Lagrangian coupling. To picture the unresolved droplet formation near the liquid jet interface in the case of coarse grids we considered a theoretical model to describe the unresolved flow instabilities leading to turbulent breakup. These entrained droplets are then represented by an Eulerian–Lagrangian hybrid concept. On the one hand, we used a volume of fluid method (VOF) to characterize the global spreading and the initiation of droplet formation; one the other hand, Lagrangian droplets are released at the liquid–gas interface according to the theoretical model balancing consolidating and disruptive energies. Here, a numerical coupling was required between Eulerian liquid core and Lagrangian droplets using mass and momentum source terms. The presented methodology was tested for different liquid jets in Rayleigh, wind-induced and atomization regimes and validated against literature data. This comparison reveals fairly good qualitative agreement in the cases of jet spreading, jet instability and jet breakup as well as relatively accurate size distribution and Sauter mean diameter (SMD) of the droplets. Furthermore, the model was able to capture the regime transitions from Rayleigh instability to atomization appropriately. Finally, the presented sub-grid model predicts the effect of the gas-phase pressure on the droplet sizes very well.  相似文献   

10.
This paper describes the implementation of the instability analysis of wave growth on liquid jet surface, and maximum entropy principle (MEP) for prediction of droplet diameter distribution in primary breakup region. The early stage of the primary breakup, which contains the growth of wave on liquid–gas interface, is deterministic; whereas the droplet formation stage at the end of primary breakup is random and stochastic. The stage of droplet formation after the liquid bulk breakup can be modeled by statistical means based on the maximum entropy principle. The MEP provides a formulation that predicts the atomization process while satisfying constraint equations based on conservations of mass, momentum and energy. The deterministic aspect considers the instability of wave motion on jet surface before the liquid bulk breakup using the linear instability analysis, which provides information of the maximum growth rate and corresponding wavelength of instabilities in breakup zone. The two sub-models are coupled together using momentum source term and mean diameter of droplets. This model is also capable of considering drag force on droplets through gas–liquid interaction. The predicted results compared favorably with the experimentally measured droplet size distributions for hollow-cone sprays.  相似文献   

11.
杨磊  韩肇元 《实验力学》2005,20(2):186-192
液体轴对称抛撒的实验研究是以云雾爆轰武器的研制为背景的。为了研究轴向气流作用下液体轴对称抛撒二次破碎所形成的雾化场特性,本文利用两台激波管并对之加以改造,成功地在实验室实现了轴向气流作用下液体的轴对称抛撒。为了研究其雾化场的远场特性,本文利用激光粒子测量仪获得了在不同实验工况和不同位置下的雾化场SMD分布曲线。实验数据表明,由于轴向气流速度的增加,液体破碎的Weber数得到了提高,导致二次破碎初期雾化场的SMD随之减小;随着抛撒驱动压力的提高,二次破碎初期雾化场的SMD也随之减小;在同一工况下,雾化场SMD随着测量位置与喷口距离的增加而变大。  相似文献   

12.
This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling.  相似文献   

13.
This paper describes a novel derivative of the PIV method for measuring the velocity fields of droplets and gas phases simultaneously using fluorescence images rather than Mie scattering images. Two-phase PIV allows the simultaneous and independent velocity field measurement of the liquid phase droplets and ambient gas in the case of two-phase flow mixing. For phase discrimination, each phase is labelled by a different fluorescent dye: the gas phase is seeded with small liquid droplets, tagged by an efficient fluorescent dye while the droplets of the liquid phases are tagged by a different fluorescent dye. For each phase, the wavelength shift of fluorescence is used to separate fluorescence from Mie scattering and to distinguish between the fluorescence of each phase. With the use of two cross-correlation PIV cameras and adequate optical filters, we obtain two double frame images, one for each phase. Thus standard PIV or PTV algorithms are used to obtain the simultaneous and independent velocity fields of the two phases. Because the two-phase PIV technique relies on the ability to produce two simultaneous and independent images of the two phases, the choice of the labelling dyes and of the associated optical filter sets is relevant for the image acquisition. Thus a spectroscopic study has been carried out to choose the optimal fluorescent dyes and the associated optical filters. The method has been evaluated in a simple two-phase flow: droplets of 30–40 μm diameter, produced by an ultrasonic nozzle are injected into a gas coflow seeded with small particles. Some initial results have been obtained which demonstrate the potential of the method.  相似文献   

14.
This paper describes the microscopic and macroscopic breakup characteristics, as well as the velocity and size distributions, of mono-dispersed droplets in relation to the breakup regimes. For this experiment, a droplet generator equipped with a piezo stack produced mono-dispersed droplets. The droplet-breakup phenomenon due to the cross-flow was captured in microscopic and macroscopic views by using the following: a spark lamp, a Nd:YAG laser, a long distance microscope and a CCD camera as a function of the Weber number. Along with the analysis of the images, the droplet size and velocity distributions were measured in the near nozzle region by a phase Doppler particle analyzer system at bag, stretching and thinning, and catastrophic breakup regimes. The results of this study showed the size and velocity distributions of disintegrated droplets at the bag, stretching and thinning, and catastrophic breakup regimes. In the bag breakup regime, the droplets separated into small and large droplets during breakup. Alternatively, the droplets disintegrated at a shorter duration and formed a cloud, similar to a fuel spray injected through an injector, in the stretching and thinning and catastrophic breakup regimes.  相似文献   

15.
The work investigates numerically the atomization regime of a liquid injected into compressed CO2 under subcritical conditions, i.e. below the CO2-solvent critical pressure. To vary the conditions within the atomization regime whilst keeping up with realistic experimental background, ethanol and methylene chloride were selected as injected fluid and pressure was modified as well. Results first show that the jet indeed breaks up by atomization, which confirms the validity at high pressure of the breakup classification diagram. Aiming at evaluating the size distribution of the droplets formed by the jet atomization, two methods of interface tracking were investigated. Compared to the VOF-PLIC classical method, the novel sub mesh (VOF-SM) approach allows for determining smaller sized droplets without digital broadcasting.  相似文献   

16.
In the present paper, we consider the shock–free breakup of droplets in their encounter with a layer (sheet) of a moving gas in the absence of pressure perturbations when the droplets are affected by a short U–shaped pulse of aerodynamic forces. Under a high pressure of the ambient gas medium p0 = 20—80 bar, the droplets (ethanol or liquid oxygen) have a chance to break up after stay in a thing (2—5 mm thick) gas layer (jet) moving with a velocity of 1—10 m/sec. A distinctive feature of the process is that the characteristic time of droplet deformation and the period of natural oscillations coincide with the residence time for the droplets in the region of their interaction with the gas stream. Empirical formulas are proposed for determination of the total breakup time and the duration of the droplet disintegration stage in shock–free breakup.  相似文献   

17.
Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet.  相似文献   

18.
Measurements of entrainment are presented for air and water flowing in horizontal 2.54 and 5.08 cm pipelines. After the initiation of atomization, entrainment increases with the third power of the gas velocity. At very high gas velocities a fully entrained oendition in reached for which further increases in the gas velocity do not cause a decrease in the flow rate of the wall film. Gas density bas a small effect provided comparisons are made at the same gas velocity rather than at the same mass flowrate. The results are interpreted by asauming that the rate of deposition of droplets on the wall film varies linearly with the concentration of droplets and that the rate of atomization of the wall film varies linearly with its flow rate.  相似文献   

19.
For vertical gas-liquid annular flow the fraction of the liquid in the gas is controlled by the rate of atomization of the liquid film flowing along the wall and the rate of deposition of droplets entrained in the gas. Measurements of the rate of atomization are interpreted by a Kelvin-Helmholtz mechanism. Small wavelets on the liquid film are visualized to be entrained when wave-induced variations in the gas pressure cannot be counterbalanced by surface tension effects.  相似文献   

20.
The purpose of this investigation is to study the effect of the orifice geometry on liquid breakup. In order to develop a better understanding of the liquid jet breakup, investigations were carried out in two steps—study of low-pressure liquid jet breakup and high-pressure fuel atomization. This paper presents the experimental investigations conducted to study the flow behavior of low-pressure water jets emanating from orifices with non-circular geometries, including rectangular, square, and triangular shapes and draws a comparison with the flow behavior of circular jets. The orifices had approximately same cross-sectional areas and were machined by electro-discharge machining process in stainless steel discs. The liquid jets were discharged in the vertical direction in atmospheric air at room temperature and pressure conditions. The analysis was carried out for gage pressures varying from 0 to 1,000 psi (absolute pressures from 0.10 to 6.99 MPa). The flow behavior was analyzed using high-speed visualization techniques. To draw a comparison between flow behavior from circular and non-circular orifices, jet breakup length and width were measured. The flow characteristics were analyzed from different directions, including looking at the flow from the straight edges of the orifices as well as their sharp corners. The non-circular geometric jets demonstrated enhanced instability as compared to the circular jets. This has been attributed to the axis-switching phenomenon exhibited by them. As a result, the non-circular jets yielded shorter breakup lengths as compared to the circular jets. In order to demonstrate the presence of axis-switching phenomenon in square and triangular jets, the jet widths were plotted along the axial direction. This technique clearly demonstrated the axis switching occurring in square and triangular jets, which was not clearly visible unlike the case of rectangular jets. To conclude, non-circular geometry induces greater instabilities in the liquid jets, thereby leading to faster disintegration. Thus, non-circular orifice geometries can provide a cheaper solution of improving liquid breakup and thus may enhance fuel atomization as compared to the precise manufacturing techniques of drilling smaller orifices or using costly elevated fuel injection pressure systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号