首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
An experimental investigation of the moderate Reynolds number plane air jets was undertaken and the effect of the jet Reynolds number on the turbulent flow structure was determined. The Reynolds number, which was defined by the jet exit conditions, was varied between 1000 and 7000. Other initial conditions, such as the initial turbulence intensity, were kept constant throughout the experiments. Both hot-wire and laser Doppler anemometry were used for the velocity measurements. In the moderate Reynolds number regime, the turbulent flow structure is in transition. The average size and the number of the large scale of turbulence (per unit length of jet) was unaffected by the Reynolds number. A broadening of the turbulent spectra with increasing Reynolds number was observed. This indicated that there is a decrease in the strength of the large eddies resulting from a reduction of the relative energy available to them. This diminished the jet mixing with the ambient as the Reynolds number increased. Higher Reynolds numbers led to lower jet dilution and spread rates. On the other hand, at higher Reynolds numbers the dependence of jet mixing on Reynolds number became less significant as the turbulent flow structure developed into a self-preserving state.List of symbols b u velocity half-width of the jet - C u, C u,0 constants defining the velocity decay rate - D nozzle width - E u one dimensional power spectrum of velocity fluctuations - f frequency - K u, K u,0 constants defining the jet spread rate - k wavenumber (2f/U) - L longitudinal integral scale - R 11 correlation function - r separation distance - Re jet Reynolds number (U 0 D/v) - St Strouhal number (fD/U 0) - t time - U axial component of the mean velocity - U m mean velocity on the jet axis - U 0 mean velocity at the jet exit - u the rms of u - u fluctuating component of the axial velocity - V lateral component of the mean velocity - fluctuating component of the lateral velocity - x axial distance from the nozzle exit - y lateral distance from the jet axis - z spanwise distance from the jet axis - v kinematic viscosity - time lag A version of this paper was presented as paper no. 86-0038 at the AIAA 24th Aerospace Sciences Meeting, Reno NV, USA, January 1986  相似文献   

2.
An experimental investigation was made of the initial-section flow of axisymmetric helium, air, and freon-12 jets in a parallel air flow for two different velocity profiles at the nozzle exit near the boundary of the jet. In one case, the velocity profile was determined by boundary layers on the nozzle walls; in the other case, it was produced artificially by means of a honeycomb of tubes of variable length. Measurements were made of the profiles of the mean and the pulsation velocity and the temperature. The flow was also photographed. The investigations showed that, depending on the initial conditions, the intensity of mixing of the jets in the initial section at Reynolds numbers Re 104 (calculated using the jet diameter) can change from the level determined by molecular diffusion to the level characteristic of developed turbulent flow. The flow structure in the annular mixing layer also depends strongly on the initial conditions. The observed ordered structures in the mixing layer are related to a section of development of perturbations near the nozzle. The ordered structures are strongly influenced by the effect on the jet of acoustic vibrations from an external source. When the initial velocity profile is produced by the honeycomb, the transition to developed turbulence may be due to the development of long-wavelength perturbations or to the development of small-scale turbulence generated by the flow over the end of the honeycomb.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 18–24, July–August, 1980.We thank V. M. levlev and K. I. Artamonov for assistance and for discussing the work.  相似文献   

3.
The presently known methods for calculating plane and axisymmetric turbulent jets in a wake flow are based on dividing the flow region into two segments, initial and basic [1–3], Here the matching of the parameters of the initial and basic segments is of an artificial nature, since it permits the existence of a physically impossible discontinuity of the curves of the velocity distribution and the jet width along the axis.The aerodynamic characteristics of the transition segment, extending from the point of convergence of the boundary layers at the end of the initial segment to the section corresponding to the point of inflection of the curve um(x), differ significantly from the characteristics of the initial and basic segments. This difference is due not only to the sharp increase of the velocity pulsations, but also the marked deformation of the average longitudinal velocity component profile. Consequently, the calculation of the transition segment, in contrast to the initial and basic segments, cannot be based on the single-parameter method.Generally speaking, the flow development in the transition segment may be calculated with the aid of the method [4], which reduces the solution of the problem to an equation of the heat conduction type and assumes the use of an experimental curve of the velocity distribution along the jet axis. Abramovich has carried out the calculation of the transition segment of a plane submerged jet on the basis of certain assumptions which are based on the results of experimental studies [1].Below is presented an approximate method of calculating the transition segment of plane and axisymmetric turbulent jets in a wake flow in which the velocity profiles obtained for the extreme sections of this segment are used for calculating the flow parameters in the initial and basic segments.  相似文献   

4.
 The paper presents an experimental investigation of turbulent jets issuing from rectangular nozzles. Nozzles with aspect ratios between 3 and 10 were used. Eight different initial conditions were studied. The following jet parameters were measured and evaluated: mean velocity components, jet boundaries, jet momentum, jet entrainment, turbulence intensities and Reynolds stresses. A DISA 55M thermoanemometer and a data acquisition system BE256 were used. The influence of the initial conditions on the similarity of the flow was determined with respect to the mean axial velocity, turbulence intensity and the Reynolds stresses. A significant influence of the initial conditions on the flow structure was observed. The possibility for jet control is discussed and suggestions are given about the need to investigate different parameters. Received: 25 November 1996/Accepted: 30 October 1997  相似文献   

5.
The behavior of a non-buoyant circular water jet discharged from a contraction nozzle was experimentally investigated. In this experiment, the Reynolds number of the jet, based on the mean velocity results obtained by particle image velocimetry (PIV), ranged from 177 to 5,142. From the experimental results, we found that the cross-sectional profile of the axial velocity for a laminar flow near the nozzle did not show a top-hat distribution, whereas the profiles with Reynolds number higher than 437 were almost top-hat. The length of the zone of flow establishment (ZFE) was found to decrease with increasing Reynolds number. The measured centerline velocity decayed more rapidly and, consequently, approached the theoretical equation earlier near the nozzle as the Reynolds number increased. The decay constant for the centerline velocity of the turbulent cases was relatively lower than that discovered in theory. It is assumed that this probably resulted from the use of the contraction nozzle. Verifying the similarity of the lateral velocity profiles demonstrated that the Gaussian curve was properly approximated only for the turbulent jets and not for the laminar or transitional flows. The jet half width seldom grew for the laminar or transitional flows, whereas it grew with increasing axial distance for the turbulent flows. The spreading rates for the turbulent flows gradually decreased with increasing Reynolds number. The normalized turbulence intensity along the jet centerline increased more rapidly with the axial distance as the Reynolds number increased, and tended to the constant values proposed by previous investigators. The Reynolds shear stress levels were also found to increase as the Reynolds number increased for the turbulent jets.  相似文献   

6.
Analysis of numerous experimental data reveals an influence of large vortices on the structure and characteristic parameters of flows. An approximate theory is proposed for describing the effect of large vortices on the pressure pulsations, the profiles of the pulsation velocities, the turbulence energy, and the velocity correlations (turbulence friction stresses). Large vortices are shown to have a long-range influence in that they induce pulsations of the pressure and the velocity at large distances, in particular in regions where transverse velocity gradients are absent (jet boundaries, symmetry axis, core of the initial section of a jet, etc.). When the theory is applied to the calculation of the turbulent characteristics of a mixing layer, a planar jet, a combustion jet, and a boundary layer on a flat surface, it is satisfactorily confirmed by the experimental data of a number of authors.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, p. 10–20, September–October, 1979.I thank A. B. Vatazhin, A. S. Ginevskii, T. A. Girshovich, and A. N. Sekundov for helpful advice.  相似文献   

7.
A two-dimensional flow generated by the interaction of two opposing, symmetric curved wall jets is investigated experimentally. The overall flow field can be divided into the curved wall jet region, the interaction region, and the merged jet region; thus, the results of the measurement are discussed to characterize these three distinct regions. For the curved wall jet region, the Reynolds stress distribution, the correlation coefficient, , and the ratio of normal stresses, , are presented and the effects of curvature and adverse pressure gradient on these distributions are discussed. The Reynolds stress distributions in the interaction region are analyzed in detail to illuminate the negative production of the turbulent kinetic energy. The developing jet in this region is found to accelerate owing to the very high pressure arising from the collision of the two wall jets. A counter-gradient shear flow situation is also observed in this interacting region. Measured data in the merged jet region are often compared to those of plane jets and the development of the merged jet is discussed in that respect. The spreading rate of the present merged jet is found to be much larger than that of the plane jets. To account for the larger spreading rate, the intermittency distribution is also investigated.List of symbols b position of y where U = U c/2 - f turbulent/non-turbulent interface crossing rate - f max maximum interface crossing rate - h slot height of the wall jet, 10 mm - L u integral length scale - P, P a static and atmospheric pressure, respectively - P u 2 production rate of longitudinal normal stress - P v 2 production rate of lateral normal stress - r radial distance from the cylinder surface - R radius of curvature of the cylinder, 100 mm - r 1/2 position of r where U=U m/2 - U streamwise velocity - U c centerline velocity of the merged jet - U m maximum velocity of the curved wall jet - U 0 exit velocity - \] Reynolds stresses - V lateral velocity in the merged jet - x distance along the centerline of the merged jet - y lateral distance from the centerline of the merged jet - intermittency factor  相似文献   

8.
An experimental investigation was made of a two dimensional flow formed by the interaction of two asymmetric turbulent curved wall jets past a circular cylinder. Measurements were made of velocity and turbulence intensity profiles of the two curved wall jets before the interaction, and those of the merged jet after the interaction. The location of the interaction region of the two opposing curved wall jets and the flow direction of the merged jet were found to depend primarily on the ratio of initial momentum fluxes. The velocity and turbulence intensity profiles of the merged jet were similar to those of the plane turbulent jet. However, the growth rate of the merged jet was approximately 1.5 times larger than that of the plane jet. The influence of the momentum flux ratio on the growth rate appeared to be insignificant.List of symbols C f friction coefficient - h slot height - J p, J c initial momentum flux of a power jet and of a control jet, respectively - P, Pa wall static and atmospheric pressure, respectively - Re Reynolds number based on slot height - Re m local Reynolds number U m y m /v - U local mean velocity - U c velocity along the center line of the merged jet - U m local maximum velocity of the curved wall jet - u r.m.s. value of velocity fluctuations - u u friction velocity - U + U/ut - x distance along the cylinder surface - x distance along the center line of the merged jet - y 1/2, y 1/2 position of y and y where U = U m /2 and U = U c /2, respectively - y + yu t/V - deflection angle of the merged jet (Fig. 4) - interaction angle (Fig. 4) - merged jet angle (Fig. 4) - angle measured from the center line of the cylinder (Fig. 4) - interception angle (Fig. 8) - , normalized coordinates, y/y 1/2 and y/y 1/2, respectively  相似文献   

9.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

10.
Flow in a turbulent nonisothermal heterogeneous jet is characterized by considerable velocity [1, 2] and temperature disequilibrium [3] (us u and Ts T, where us, Ts and u, T are velocity and temperature of dispersed and gas components). As was shown in [4], an impurity is not passive, and it leads to suppression of jet turbulence (a result of interphase exchange by pulse and heat). Nonetheless, during reaction of a heterogeneous jet with a barrier orientated along the normal to the running flow, a significant increase is observed in heat emission characteristics in the vicinity of the point of deceleration [5] (for a single-phase jet an increase in heat exchange is typical with an increase in the intensity of turbulence [6]). The intensity of the change in heat emission in this case is a result of velocity and temperature disequilibrium for flow in jets, and it depends on a number of factors (temperature, concentration, phase condition of the dispersed impurity, etc.) and on the nature of the reaction of the dispersed component with the barrier surface [7]. There are numerous experimental data devoted to this. Apart from work in [5, 7], attention is drawn to [8] where an increase is also noted in the heat flow (by a factor of 1.4) at the deceleration point for a plane cylindrical end and a hemisphere. The aim of the present work is a study of the effect of a dispersed component on heat exchange with jet flow around a barrier.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 63–68, November–December, 1986.  相似文献   

11.
The present investigation reports on the near field behavior of gas jets in a long confinement and points out the differences between this type of jet flow and those of free jets and jets in a short confinement.The jet, with a diameter of 8.73 mm, is aligned concentrically with a tube of 125 mm diameter; thus giving a confinement area ratio of 205. The arrangement forms part of the test section of an open-jet wind tunnel and this gives a confinement length-to-jet diameter ratio of 1,700. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made of the jet near field using a one-color, one-component laser doppler velocimeter operating in the forward scatter mode. In addition, the turbulent shear field of an air jet is examined in more detail using hot-wire anemometers.In view of the long confinement, the presence of the jet is not being felt immediately at the tunnel exit. Consequently, the air column inside the tunnel is first compressed by the jet and then slowly pushed out of the tunnel. This behavior causes the jet to spread rapidly and to decay quickly. As a result, an equilibrium turbulence field is established in the first two diameters of the jet. This equilibrium field bears striking similarity to that found in self-preserving, turbulent free jets and jets in short confinement and is independent of jet fluid densities and velocities. In terms of these characteristics, the near field of jets in a long confinement is very different from that found in free jets and jets in short confinements.  相似文献   

12.
An experimental study was conducted to investigate the effect of nozzle geometry on the mixing characteristics and turbulent transport phenomena in turbulent jets. The nozzle geometry examined were round, square, cross, eight-corner star, six-lobe daisy, equilateral triangle as well as ellipse and rectangle each with aspect ratio of 2. The jets were produced from sharp linear contoured nozzles which may be considered intermediate to the more widely studied smooth contraction and orifice nozzles. A high resolution particle image velocimetry was used to conduct detailed velocity measurements in the near and intermediate regions. It was observed that the lengths of the potential cores and the growth rates of turbulence intensities on the jet centerline are comparable with those of the orifice jets. The results indicate that the decay and spreading rates are lower than reported for orifice jets but higher than results for smooth contoured jets. The jets issuing from the elliptic and rectangular nozzles have the best mixing performance while the least effective mixing was observed in the star jet. The distributions of the Reynolds stresses and turbulent diffusion clearly showed that turbulent transport phenomena are quite sensitive to nozzle geometry. Due to the specific shape of triangular and daisy jets, the profiles of mean velocity and turbulent quantities are close to each other in their minor and major planes while in the elliptic and rectangular jets are considerably different. They also exhibit more isotropic behavior compared to the elliptic and rectangular jets. In spite of significant effects of nozzle geometry on mean velocity and turbulent quantities, the integral length scales are independent of changes in nozzle geometry.  相似文献   

13.
A review of articles on the study of turbulent streams having transverse displacement, in which a turbulent energy balance equation is used, is contained in [1]. Levin [2] proposed a certain development of Rotta's method [3] making it possible to determine the characteristics of the average flow and the radial distribution of pulsation magnitudes. However, in this article the scale of the turbulence (the quantityl) was given as an empirical function of the coordinates. At the same time it is clear that the distribution of the turbulence scale depends on the conditions of the problem. A special differential equation proposed in [4,5] describing the variation in time and space of the quantityl has the drawback that in deriving this equation it is necessary to invoke additional hypotheses which are difficult to test experimentally. In the present article, along with the velocity of the average flow, the pressure, and the pulsation magnitudes, the scale of the turbulence is considered as an important characteristic of the stream, determined by the reference system which consists of the Reynolds equations, continuity equations, and equations for the component of the Reynolds stress tensor. Rotta's approximate semiempirical relations and an experimental relation for the single-point correlation coefficient between the turbulent pulsations in velocity are used for closure of the system obtained. An approximate calculation is given for the principal average and pulsation characteristics of the flow for the region of the stream where the turbulence is in a state of structural equilibrium [6]. A comparison of the calculated and experimental data is presented.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 95–99, January–February, 1973.  相似文献   

14.
Turbulent supersonic submerged air jets have been investigated on the Mach number interval Ma = 1.5–3.4 and on the interval of ratios of the total enthalpies in the external medium and the jet i0 = 0.01 – 1. Oxyhydrogen jets with oxidizer ratios = 0.3–5 flowing from a nozzle at Mach numbers Ma = 1 and 2.4 have also been investigated. When < 1 the excess hydrogen in the jet burns up on mixing with the air. Special attention has been paid to obtaining experimental data free of the influence on the level of turbulence in the jet of the initial turbulence in the nozzle forechamber, shock waves occurring in the nozzle or in the jet at the nozzle exit, and the external acoustic field. The jet can be divided into two parts: an initial part and a main part. The initial part extends from the nozzle exit from the section x, in which the dimensionless velocity on the jet axis um = ux/ud = 0.75. Here, ux is the velocity on the jet axis at distance x from the nozzle exit, and ua is the nozzle exit velocity. The main part of the jet extends downstream from the section x. For the dimensionless length of the initial part xm = x/da, where da is the diameter of the nozzle outlet section, empirical dependences on Ma and i0 are obtained. It is shown, that in the main part of the jet the parameters on the flow axis — the dimensionless velocity and temperature — vary in inverse proportion to the distance, measured in units of length x, and do not depend on the flow characteristics which determine the length of the initial part of the jet. The angles of expansion of the viscous turbulent mixing layer in the submerged heated or burning jet increase with decrease in i0 and Ma and are practically independent of the afterburning process.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza. No. 4, pp. 56–62, July–August, 1988.  相似文献   

15.
In this work, the turbulent mixing of a confined coaxial jet in air is investigated by means of simultaneous particle image velocimetry and planar laser induced fluorescence of the acetone seeded flow injection. The jet is injected into a turbulent duct flow at atmospheric pressure through a 90 ° pipe bend. Measurements are conducted in a small scale windtunnel at constant mass flow rates and three modes of operation: isothermal steady jet injection at a Dean number of 20000 (R e d =32000), pulsed isothermal injection at a Womersley number of 65 and steady injection at elevated jet temperatures of ΔT=50 K and ΔT=100 K. The experiment is aimed at providing statistically converged quantities of velocity, mass fraction, turbulent fluctuations and turbulent mass flux at several downstream locations. Stochastic error convergence over the number of samples is assessed within the outer turbulent shear layer. From 3000 samples the statistical error of time-averaged velocity and mass fraction is below 1 % while the error of Reynolds shear stress and turbulent mass flux components is in the of range 5-6 %. Profiles of axial velocity and turbulence intensity immediately downstream of the bend exit are in good agreement with hot-wire measurements from literature. During pulsed jet injection strong asymmetric growing of shear layer vortices lead to a skewed mass fraction profile in comparison with steady injection. Phase averaging of single shot PLIF-PIV measurements allows to track the asymmetric shear layer vortex evolvement and flow breakdown during a pulsation cycle with a resolution of 10°. Steady injection with increased jet temperature supports mixing downstream from 6 nozzle diameters onward.  相似文献   

16.
Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450–23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have been used in the literature.  相似文献   

17.
This paper presents a method of generating a highly turbulent freestream flow, up to levels of 20% with a relatively uniform mean velocity field. This method was developed as a result of a combined water channel and wind tunnel study. The method for generating these high turbulence levels includes using high-velocity jets issuing into a mainstream cross-flow. A range of turbulence levels can be generated, using this same flow geometry, by adjusting the jet-to-mainstream velocity ratio or the Reynolds number of the flow.List of symbols b Grid bar width - D Turbulence generator jet hole diameter - Eu (f) Spectral energy for streamwise velocity fluctuations - f Frequency - H Channel height - L u Dissipation length scale, - m Exponent for length scale growth - M Grid mesh size - n Exponent for turbulence decay - Re D Reynolds number based on jet hole diameter - Re T Turbulent Reynolds numbers,u g /V - S Lateral spacing between the jet holes - T Integral time scale of turbulence - Tu Streamwise turbulence intensity,u/U - u RMS velocity in streamwise direction - U Mean local velocity in streamwise direction - U Freestream velocity in streamwise direction - v RMS velocity in normal direction - x Streamwise distance measured from the turbulence generator jets - y Vertical distance from the wall - z Spanwise distance - Boundary layer thickness (U = 0.99U ) - x Longitudinal integral length scale of turbulence This project was supported by Wright Laboratory and Allied-Signal. The authors would also like to thank Mr. David Dotson for his help in constructing the turbulence generator and Mr. Don Schmidt for his help in procuring the blower. The first author would also like to thank Professor Sigmar Wittig and the Institut für Thermische Strömungsmaschinen for support while writing this paper  相似文献   

18.
An equation for concentration pulsations is derived, and an approximation is given for the unknown correlations in the equation. An approximation is proposed for the probability distribution of the passive-impurity concentration, taking account of intermittency and allowing the effect of pulsations on the jet-flow parameters to be taken into account. Using the semiempirical (e–) model of turbulence and equations for concentration pulsations in the boundary-layer approximation, the characteristics of isothermal submerged axisymmetric jets and of axisymmetric submerged diffusion flames of propane and hydrogen in air are calculated. It is established that with increase in Froude number the intensity of the concentration pulsations decreases both for isothermal jets and for diffusion flames. The concentration pulsations have a significant effect on the characteristics of the turbulent diffusion flame in its initial region. In the absence of buoyancy forces, concentration fluctuations have little effect on the characteristics in the main region of the flame. A burning jet has a longer range than a jet that is not burning. Combustion has little effect on the intensity of velocity and concentration pulsations. The approaches that are widely used at present for the theoretical investigation of the turbulent mixing of jet-type flows use, as closure relations, a two-parameter model of turbulence consisting of semiempirical differential equations [1, 2]. As a rule, one of the equations in the turbulence model is an equation for the turbulent energy, (u is the pulsational component of the velocity; = 1, 2, 3; are the averaging brackets), and the other is either an equation for the integral scale L of the turbulence [3], or an equation for different combinations of these parameters—the turbulent viscosity [4], the the dissipation rate e2/ [5], etc. The need to use such an approach is associated primarily with the possibility of calculating mean parameters and turbulence characteristics of complex non-self-similar flows depending on the previous development of the flow. In addition, by this means of closure it is possible, using a semiempirical equation for the concentration pulsations [6, 7] (c is the mass concentration) to calculate the meansquare value of the concentration pulsations and also to determine the intermittency coefficient and the distribution function of the probability density P(c). A knowledge of these values is particularly important in investigating turbulent mixing in the presence of diffusion combustion. It is known [8] that pulsations of the gasdynamic parameters must be taken into account in describing turbulent combustion, since the calculation of diffusion-combustion characteristics in the quasilaminar formulation does not allow a number of qualitative features of the process to be taken into account. Despite the many works on turbulent-flow calculations now available, there has been little investigation of a whole series of aspects of this type of flow. For example, there has not been sufficient study of the effect of the buoyancy forces arising because of the density difference between jets of different gases on the level of the concentration pulsations. Very little data is available on the effect of combustion on the turbulent flow characteristics. The present work takes up these questions. A semiempirical equation is proposed for the concentration pulsations. This equation, which is related to the (e–) model of turbulence developed in [4], is tested in calculations of isothermal jets and also diffusional combustion flames. Particular attention is paid to the behavior of the concentration pulsations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 46–55, September–October, 1978.It remains to thank A. N. Sekundov for formulating the problem and for his interest in the work, and also V. R. Kuznetsov and I. P. Smirnova for useful discussions.  相似文献   

19.
The turbulent pipe flow of a highly dilute aqueous cationic surfactant solution is investigated by means of a pulsed ultrasound Doppler method with special emphasis on the wall boundary layer. The velocity profiles are recorded for several Reynolds numbers at varying ages of the solution. The wall shear stress velocities u τ used for the normalization of the velocity profiles are determined by fitting the measured profiles to the universal linear velocity profile in the viscous sublayer. The theoretical pressure loss is then calculated from the numerical values of u τ and compared to the experimental values. Two different scaling methods are discussed for the velocity fluctuations concerning the correlation of the root-mean square values with the effect and the amount of drag reduction. It is shown that outer scaling with the mean velocity is appropriate for the detection of drag reduction in surfactant solutions, rather than inner scaling with the wall shear stress velocity, which is common practice in investigations of 'usual' turbulent flows.  相似文献   

20.
Mesoscale chemical reactors capable of operating in the turbulent flow regime, such as confined impinging jets reactors (CIJR), offer many advantages for rapid chemical processing at the microscale. One application where these reactors are used is flash nanoprecipitation, a method for producing functional nanoparticles. Because these reactors often operate in a flow regime just beyond transition to turbulence, modeling flows in these reactors can be problematic. Moreover, validation of computational fluid dynamics models requires detailed and accurate experimental data, the availability of which has been very limited for turbulent microscale flows. In this work, microscopic particle image velocimetry (microPIV) was performed in a mesoscale CIJR at inlet jet Reynolds numbers of 200, 1,000, and 1,500. Pointwise and spacial turbulence statistics were calculated from the microPIV data. The flow was observed to be laminar and steady in the entire reactor at a Reynolds number of 200. However, at jets Reynolds numbers of 1,000 and 1,500, instabilities as a result of the jets impinging along the centerline of the reactor lead to a highly turbulent impingement region. The peak magnitude of the normalized Reynolds normal and shear stresses within this region were approximately the same for the Reynolds numbers of 1,000 and 1,500. The Reynolds shear stress was found to exhibit a butterfly shape, consistent with a flow field dominated by an oblique rocking of the impingement zone about the center of the reactor. Finally, the spatial auto- and cross-correlations velocity fluctuations were calculated and analyzed to obtain an understanding of size of the coherent structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号