首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The present paper reports a complete set of measurements made with a two-component phase Doppler anemometer of the two-phase flow generated at the impact of a transient gasoline spray onto a flat surface. The spray is generated by a pintle injector and the fuel used was gasoline. The measurements of droplet size–velocity were processed to provide time fluxes of number, mass, normal momentum, and energy of the poly-dispersion of droplets ejected at impact, and analyzed based on predictive tools available in the literature. The results show that splash is the dominant mechanism by which secondary droplets are ejected from the surface, either in the stagnation region or in the core region of the spray. In the stagnation region, a large fraction of each incident droplet adheres to the surface and the axial incident momentum contributes with a larger parcel than tangential momentum. As a result, the normal velocity of ejected droplets is much smaller than that of the original incident droplets, while tangential velocity is enhanced. The region near the stagnation point is immediately flooded upon impact of the leading front of the spray, forming a liquid film that is forced to move radially outwards as droplets continue to impinge during the steady period. Spray/wall interaction in the core region thus occurs in the presence of a moving thin liquid film, which enhances transfer of tangential momentum. As a result, film spreading and dynamics as a result of impingement forces are crucial to accurate model spray/wall interaction. The outer region of the spray is dominated by the vortical structure induced by shear forces, which entrains small responsive secondary droplets to re-impinge. Furthermore, prediction of the outcome of spray impact requires a precise knowledge of the two-phase flow in the presence of the target.  相似文献   

2.
A spray impacting onto a wall produces a flow of secondary droplets. For relatively sparse spray these secondary droplets are produced by the splashing of the impacting drops and their interactions. For dense sprays, like Diesel injection sprays, these secondary droplets are created by the fluctuating liquid film created on the wall. In the present paper hydrodynamic models are presented for these two extreme cases. The velocities of the secondary droplets produced by the crown splash in a sparse spray are described theoretically. Next, the fluctuations in the motion of the liquid film created by a dense impacting spray are analyzed statistically. This motion yields the formation of finger-like jets, as observed in experiments of a Diesel spray impacting onto a rigid wall. The characteristic size and velocity of the film fluctuations are estimated. These two theoretical models are validated by comparison with the experimental data.  相似文献   

3.
An experimental study of spray impact onto horizontal flat and rigid surfaces is presented and used as input data for a new empirical model. A phase Doppler instrument has been used to measure drop size and two components of velocity directly above the target. The average film thickness formed due to spray impact has been measured using a high-speed CCD camera. The spray–wall interaction has been characterized in terms of correlations for the velocity and trajectory of secondary droplets and the mass and number ratio of the secondary spray. The novel aspect of the model is that the correlations are based on mean statistics over many events and not on the outcome of single drop impact experiments. Furthermore a rather large range of oblique impact angles have been studied and incorporated into the empirical models as an influencing factor.  相似文献   

4.
In this work, an experimental study of spray impact onto a horizontal flat and rigid surface is presented. The phase Doppler technique has been used to characterize both the impacting and the secondary spray in terms of mass and number flux, size distribution and velocities of the droplets above the target. A high-resolution CCD camera has been used to measure the average liquid film thickness formed due to spray impact, whereas a high-speed CMOS camera has been used to characterize the splashing droplets from the wall. This visualization of the splashing phenomenon and the knowledge about the liquid film thickness are used to formulate a new physical model of the crown evolution. Furthermore, information about the incident-to-ejected mass fraction and number fraction are novel contributions of this study. Considerable data are provided comparing the impact of single drops onto a liquid film to impact of drops in a spray, and the significance of the observed differences for modelling efforts is discussed. The measurements of this study are also shown to be rather sensitive to the placement of the phase Doppler measurement volume above the surface and to the operating parameters of the instrument. These effects have been documented and discussed for this particular measurement situation.  相似文献   

5.
This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling.  相似文献   

6.
The results of an experimental study on droplet impactions in the flow of a gas-sheared liquid film are presented. In contrast to most similar studies, the impacting droplets were entrained from film surface by the gas stream. The measurements provide film thickness data, resolved in both longitudinal and transverse coordinates and in time together with the images of droplets above the interface and images of gas bubbles entrapped by liquid film. The parameters of impacting droplets were measured together with the local liquid film thickness. Two main scenarios of droplet-film interaction, based on type of film perturbation, are identified; the parameter identifying which scenario occurs is identified as the angle of impingement. At large angles an asymmetric crater appears on film surface; at shallow angles a long, narrow furrow appears. The most significant difference between the two scenarios is related to possible impact outcome: craters may lead to creation secondary droplets, whereas furrows are accompanied by entrapment of gas bubbles into the liquid film. In addition, occurrence of partial survival of impacting droplet is reported.  相似文献   

7.
The spray–wall impingement process in gasoline direct injection (GDI) engines, which is caused by the interaction among spray, wall and air to move the air–fuel mixture near the spark plug, directly influences the engine performance and emissions. Therefore, a detailed understanding of this process is very important in designing an injection system and controlling a strategy of GDI engines. The purpose of this study is to understand the spray–wall impingement characteristics for more efficient designing of the injection system in GDI engines and to supply the fundamental data under engine operation conditions. The wall impingement processes of hollow-cone fuel spray according to ambient gas conditions and wall geometry are calculated by validated spray models. The calculated results were compared with the experimental results obtained by the laser-induced exciplex fluorescence (LIEF) technique. It was found that the spray and vortex cloud at the high ambient pressure were distributed at inner area of cavity and the more fuel film mass observed at this condition. The fuel film mass decreased with the increase of ambient temperature, while the fuel film mass increased at high cavity angles.  相似文献   

8.
This paper describes the development of a laser induced fluorescence (LIF) technique to quantify the thickness and spatial distribution of transient liquid fuel films formed as a result of spray–wall interaction. The LIF technique relies on the principle that upon excitation by laser radiation the intensity of the fluorescent signal from a tracer like 3-pentanone is proportional to the film thickness. A binary solution of 10% (v/v) of 3-pentanone in iso-octane is used as a test fuel with a Nd:YAG laser as the excitation light source (utilising the fourth harmonic at wavelength 266 nm) and an intensified CCD camera is used to record the results as fluorescent images. The propagation of the excitation laser beam through the optical piston is carefully controlled by total internal reflection so that only the fuel film is excited and not the airborne droplets above the film, which had been previously shown to induce significant error. Other known sources of error are also carefully minimised. Calibrated temporally resolved benchmark results of a transient spray from a gasoline direct injector impinging on a flat quartz crown under atmospheric conditions are presented, with observations and discussion of the transient development of the fuel film. The calibrated measurements are consistent with previous studies of this event and demonstrate the applicability of the technique particularly for appraisal of CFD predictions. The potential utilisation of the technique under typical elevated ambient conditions is commented upon.  相似文献   

9.
The impingement of coarse sprays with a mean diameter in the order of millimeters on vertical walls with and without an additionally supplied wall film was studied at conditions well below the Leidenfrost limit. The fraction of the sprayed liquid deposited on the wall was determined experimentally and theoretically for various impingement angles with the help of a flat fan spray directed against the wall. The deposition fraction shows a distinct minimum in the range of intermediate impingement angles. This fact cannot be described by single-droplet-based deposition-splash criteria when considering the droplet’s impact momentum alone. The investigation demonstrates that the measurement results can be explained by including the collision of splashed droplets with incoming ones. In principle, the entrainment of the primary spray’s fine fraction in the gas flow field may also be of relevance. For the coarse and relatively sparse sprays investigated, the importance of the collisions in determining the overall balance of deposited and splashed liquid was estimated by event statistics derived from Monte Carlo simulations. The main outcome of wall interaction for the coarse spray is splashing. The splashed droplets form a secondary spray. When the impingement angle is steep, the splashed liquid is redirected towards the wall as a result of the collision between the incoming primary spray and splashed droplets.  相似文献   

10.
This paper reports on the development of a numerical weather simulation model combined with a detailed spectral-bin cloud microphysics model that can explicitly consider the droplet motion and droplet-atmosphere interactions of sea spray. Sea spray is composed of liquid droplets ejected from the sea surface into the evaporation layer, where it enhances heat as well as momentum exchanges between the atmosphere and the sea. In our study, we analyzed the results of idealized 3D simulations to investigate the impact of sea spray on latent heat exchanges and their consequent impact on boundary layer cloud development. The results show that sea spray enhances the latent heat flux by up to 62 % for the surveyed 10m-height velocities, which ranged from 12 to 42 m/s. They also show that sea spray moistening significantly enhances boundary layer cloud development.  相似文献   

11.
12.
The dynamic behavior of a water droplet impinging upon a heated surface was shown to be significantly different, depending on the normal momentum of the impinging droplet before impact. This experimental study focused mainly on the effects of the impinging angle of the droplet on impact dynamics and its dependence on surface temperature. At the surface temperature of the nucleate boiling regime, disintegration of the droplet did not occur, whereas the deforming droplet adhered to the surface. The liquid film was spread and contracted several times on the horizontal surface, but the expanded droplet merely slipped without noticeable contraction on the inclined surfaces. In the film boiling regime, the impinging droplet spread over the surface as a liquid film separated from the surface by the vapor produced. Depending on the magnitude of the normal momentum of droplet, disintegration into several irregular shapes of liquid elements occurred in the case of the horizontal and 30°-inclined surfaces. The impinging droplet in the case of the 60°-inclined surface did not break up and tended to recover its original spherical shape. Received: 16 February 1999/Accepted: 9 November 1999  相似文献   

13.
Surface roughness can have a critical effect upon the splashing threshold and dynamics of a drop impacting on either a dry or rough solid surface or one coated by a thin fluid film. As most coating applications and spray systems quickly evolve to a state where the droplets impinge upon fluid deposited by preceding droplets, the combined contributions of surface roughness and a pre-deposited thin liquid film of comparable thickness upon droplet impingement dynamics are examined. For comparison, we include results for droplets impacting on a smooth, dry surface and a smooth surface wetted by a thin fluid film. The inclusion of surface roughness considerably lowers the splashing threshold and alters the splashing dynamics such that differences in fluid surface tensions between 20.1 and 72.8 dynes/cm or viscosities between 0.4 and 3.3 cP have little effect.  相似文献   

14.
The paper is dealing with a research carried out at the Institute of Thermal-Fluid Dynamics to investigate the rewetting of a hot surface. The rewetting of the hot surface by spray cooling has been analyzed in previous works. After the droplet impingement, the liquid film falls along the surface, and rewetting by falling film takes place. The experiment was characterized by a 1-dimensional liquid spray, i.e., drops having a uniform, constant diameter, impinging on the heated surface. The cooling rate of the hot surface has been detected as a function of wall temperature, drop diameter and velocity, and impact point of the spray. The working feature of the spray is based on the varicose rupture of the liquid jet: imposing a periodic (symmetrical) perturbation with appropriate amplitude and frequency on the jet surface, the flow is “constrained” to break soon after leaving the nozzle, eventually obtaining constant diameter drops, depending on the nozzle diameter and liquid velocity. In this paper, previous results with spray cooling are compared with experimental runs in which the spray injection is replaced with a falling film all along the test section. The rewetting velocity has been calculated from the response of the thermocouples placed on the heated wall and using a digital image system based on the video image registered during the runs.  相似文献   

15.
In this article, a smoothed particle hydrodynamics method is developed to simulate the dynamic process of the impact of two viscoelastic droplets onto a rigid plate. The Oldroyd-B fluid is considered as the rheological model to describe the viscoelastic characteristics. An artificial stress is added into the momentum equation to remove the tensile instability. The solution of the problem of two successive impacts of droplets are demonstrated to be in good agreement with the literature data. The problem of two droplets impacting simultaneously onto a rigid plate is investigated.  相似文献   

16.
An Eulerian–Lagrangian fluid dynamics model simulating the development of dense liquid plumes formed during injection of fuels against compressed air is described and assessed against experimental data. The numerical model employs an adaptive local grid refinement methodology combined with a calculation procedure distributing the mass, momentum and energy exchanged between the liquid and gaseous phases in the numerical cells found in the vicinity of the moving droplets. The use of appropriate weighting functions resolves numerical as well as physical problems realised when the interaction volume available between the two phases is limited to the cell-containing parcel, whose volume may become comparable to that of the dispersed phase. Calculation of ‘virtual’ cell properties provide better estimates for the flow variables realised by the droplets crossing cells in the wake of those upstream and allows for larger time steps to be employed in the solution of the carrier phase conservation equations. The results suggest that the proposed methodology offers significant improvements compared to the standard Lagrangian one frequently adopted in simulation of combustion systems, without the need to use Eulerian flow models in dense spray regions.  相似文献   

17.
The flow structure and heat transfer of a mist jet with a low mass concentration of droplets (within 1%) impinging onto a flat surface aligned normal to the jet are studied numerically. The mathematical model is based on solving a system of Reynolds-averaged Navier-Stokes equations for a two-phase flow with the kinetic equation of the probability density function for coordinates, velocity, and temperature of particles. Addition of droplets is demonstrated to enhance heat transfer substantially, as compared with an impinging single-phase air jet in the region directly adjacent to the stagnation point of the jet.  相似文献   

18.
Air flow and pressure inside a pressure-swirl spray for direct injection (DI) gasoline engines and their effects on spray development have been analyzed at different injector operating conditions. A simulation tool was utilized and the static air pressure at the centerline of the spray was measured to investigate the static pressure and flow structure inside the swirl spray. To investigate the effect of static air pressure on swirl spray development, a liquid film model was applied and the Mie-scattered images were captured. The simulation and experiment showed that recirculation vortex and air pressure drop inside the swirl spray were observable and the air pressure drop was greater at high injection pressure. At high fuel temperature, the air pressure at the nozzle exit showed higher value compared to the atmospheric pressure and then continuously decreased up to few millimeters distance from the nozzle exit. The pressure drop at high fuel temperatures was more than that of atmospheric temperature. This reduced air pressure was recovered to the atmospheric pressure at further downstream. The results from the liquid film model and macroscopic spray images showed that the air pressure started to affect the liquid film trajectory about 3 mm from the nozzle exit and this effect was sustained until the air pressure recovered to the atmospheric pressure. However, the entrained air motion and droplet size have more significant influence on the spray development after the most of the liquid sheet is broken-up and the spray loses its initial momentum.  相似文献   

19.
This study is based on dynamic mesh refinement and uses spray breakup models to simulate engine spray dynamics. It is known that the Lagrangian discrete particle technique for spray modeling is sensitive to gird resolution. An adequate spatial resolution in the spray region is necessary to account for the momentum and energy coupling between the gas and liquid phases. This study uses a dynamic mesh refinement algorithm that is adaptive to spray particles to increase the accuracy of spray modeling. On the other hand, the accurate prediction of the spray structure and drop vaporization requires accurate physical models to simulate fuel injection and spray breakup. The present primary jet breakup model predicts the initial breakup of the liquid jet due to the surface instability to generate droplets. A secondary breakup model is then responsible for further breakup of these droplets. The secondary breakup model considers the growth of the unstable waves that are formed on the droplet surface due to the aerodynamic force. The simulation results are compared with experimental data in gasoline spray structure and liquid penetration length. Validations are also performed by comparing the liquid length of a vaporizing diesel spray and its variations with different parameters including the orifice diameter, injection pressure, and ambient gas temperature and density. The model is also applied to simulate a direct-injection gasoline engine with a realistic geometry. The present spray model with dynamic mesh refinement algorithm is shown to predict the spray structure and liquid penetration accurately with reasonable computational cost.  相似文献   

20.
The collision dynamics of water droplets impacting onto a solid is studied by means of three-dimensional computer simulations. The Navier–Stokes equations for unsteady, incompressible, viscous fluids in the three-dimensional Cartesian coordinate system are approximated and solved by a finite difference method. The volume-of-fluid (VOF) technique is used to track the free liquid surface. Normal and oblique collisions of droplets with the substrate are simulated at low droplet impact inertia. The effect of impact angle on the deformation behavior of droplets is investigated. The experimental observations and the numerical results are in reasonable agreement. Theoretical aspects of the physics of the collision phenomena are addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号