首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
利用上升沿约0.5 s、半高宽约6 s、幅值可达40 kV的微秒脉冲电源和上升沿约150 ns、半高宽约300 ns、幅值可达50 kV的纳秒脉冲电源激励大气压弥散放电,并分别采用刀型和锯齿电极放电。通过电压电流测量和发光图像拍摄,改变施加电压种类、脉冲重复频率、高压电极结构和气隙距离等参数,研究了不同条件下弥散放电特性。实验结果表明:纳秒脉冲电源和微秒脉冲电源均能在大气压空气中激励大面积的弥散放电,弥散放电面积最大达90 cm2;放电的均匀性受脉冲参数与电极形状影响显著,其中刀型电极条件下纳秒脉冲激励的弥散放电均匀性最佳;相同条件下纳秒脉冲弥散放电的瞬时功率大于微秒脉冲弥散放电,最高可达275 kW,而纳秒脉冲弥散放电的能量小于微秒脉冲弥散放电;保持其他条件不变,弥散放电传导电流幅值随着气隙距离的增加而降低,放电强度随着脉冲重复频率的增加而增强,弥散放电的工作电压范围随着脉冲重复频率的增加显著降低。因此在低频、刀型电极结构中易于获得均匀与较大工作电压范围的大气压弥散放电。  相似文献   

2.
陈健  高继魁 《光子学报》1993,22(4):363-365
本文介绍了一种新型内增强MCP选通通用变象管的供纳秒分幅用的快门脉冲发生器和偏转阶梯波脉冲发生器。序列快门脉冲:脉冲个数3个,上升沿≤2ns,脉宽10ns,画幅间隔50ns,分幅速率2×107f/s。偏转系统:台阶数2个,阶幅65V,间隔50ns。  相似文献   

3.
紧凑型重复频率高压纳秒脉冲电源及其仿真模型   总被引:1,自引:1,他引:0       下载免费PDF全文
纳秒脉冲等离子体在诸多实际的工程应用中依赖于小型化且可靠的纳秒脉冲电源实现。设计了一种紧凑型全固态高压纳秒脉冲电源,该电源主要由直流电源部分、绝缘栅双极晶体管及其驱动控制电路、可饱和脉冲变压器、磁脉冲压缩网络等组成。通过理论计算分析、PSpice电路仿真以及实验研究表明,其最终可以在800 的输出负载阻抗上获得幅值40 kV、脉冲宽度100 ns左右、脉冲上升沿约50 ns的高电压脉冲,重复频率最高可达5 kHz。  相似文献   

4.
针对目前缺乏标准纳秒高压脉冲电源的现状,开展高稳定性纳秒高压脉冲电源回路分析、结构设计及性能测试研究。通过建立纳秒脉冲发生器等效电路模型,仿真计算获得5级初级脉冲发生电路参数,以及一级压缩陡化间隙对纳秒脉冲特性的影响规律。通过纳秒高压脉冲电源结构设计及低抖动电晕稳定开关特性研究,建立高稳定输出的纳秒脉冲电源系统。研制纳秒电阻分压器,建立基于ns及μs量级传递校准测试相结合的刻度因数标定方法,准确获得纳秒电阻分压器的刻度因数。脉冲电源输出特性测试结果表明:纳秒脉冲电源系统可以输出上升时间2.3 ns±0.5 ns、幅值范围10~60 kV的指数纳秒脉冲;输出脉冲电压在全幅值范围内的相对标准偏差不大于±1.5%。  相似文献   

5.
饶俊峰  章薇  李孜  姜松 《强激光与粒子束》2018,30(9):095002-1-095002-7
雪崩三极管因其快速性、高重复频率等特点被广泛应用于纳秒脉冲发生器。为了提高输出电压,常采用多管串联Marx电路。采用二极管代替传统多管串联Marx电路中的部分限流电阻以减少能量损耗,加快充电速度,提高重复频率,并分析了主电容和限流电阻对输出脉冲幅值和频率的影响。通过雪崩三极管的单管击穿实验,单个三极管的导通内阻最小约为2.5 Ω,多管串联Marx电路中的等效内阻使负载侧的输出电压降低,故采用多路Marx并联电路以提高输出电压幅值。通过改变Marx并联模块数量,研究了电路等效内阻对输出脉冲的影响;通过改变负载电阻值,验证了Marx并联电路在小负载下升压效果更佳。实验结果表明,通过相同的4路Marx并联电路进行放电实验,在50 Ω负载侧输出上升沿为3.4 ns、幅值为2.5 kV、可在15 kHz下稳定工作的脉冲。  相似文献   

6.
实验研究了长60m、宽20m、高10m的大尺寸TEM天线的传输特性,其脉冲源采用薄膜开关与天线一体化设计,输出电压幅值可达10kV,上升沿约1.2ns。实测了TEM天线内部的电场分布,研究了该大尺寸TEM天线中电场分布规律,给出了脉冲上升沿与传输距离的关系、脉冲幅值与传输距离的关系,总结了快沿双指数波在天线中传输的高频损耗特性,给出了实验空间的选择方法。研究结果表明:上升沿随传输距离呈线性增大趋势,两极板中间测点增大速度最快,传输50m距离,上升沿增大约1.2ns;电场幅值随传输距离呈指数减小趋势。  相似文献   

7.
 以陶瓷聚合物复合介质作为储能介质,砷化镓光导半导体开关作为开关,设计了带状Blumlein线并对其进行了实验研究。实验结果表明,复合介质Blumlein介电常数高达80~250,在21 Ω的匹配负载上获得电压幅值为2 kV,前沿小于5 ns,半高宽约34 ns,波动约±1%的平顶宽为22 ns的电压脉冲,能满足脉冲功率系统小型化的应用要求。  相似文献   

8.
利用上升沿100ns、脉宽150ns的单级磁压缩纳秒脉冲电源,通过电压电流测量和放电图像拍摄实验,研究了大气压空气中极不均匀电场结构重复频率纳秒脉冲气体放电的放电模式。结果表明纳秒脉冲气体放电存在三种典型的放电模式:电晕放电、弥散放电和火花放电。施加的脉冲电压幅值对放电模式影响显著,随着电压幅值的增加,放电依次经历电晕、弥散和火花放电。固定电压幅值时,放电可能同时存在两种模式。重复频率加强了放电强度,弥散放电的激发电压随重复频率的增加变化不大,但火花放电的激发电压随着重复频率的增加而降低。因此降低重复频率有利于在较大电压范围获得大气压空气弥散放电。  相似文献   

9.
高压超快三角波脉冲的产生   总被引:4,自引:4,他引:0  
本文讨论了使用高压功率晶体管作为开关器件研制的高压超快速斜坡脉冲发生器.得到的脉冲幅值为±1kV,上升时间为10ns,大大提高了脉冲电路的耐大电流冲击性.利用开关器件可耐大电流冲击的特点合成了三角波脉冲,三角波脉冲半宽为10ns左右,通过改变电路参量可得到不同的半宽.  相似文献   

10.
为研究以压敏电阻和瞬态抑制(TVS)二极管为代表的典型钳压型浪涌防护元件的纳秒脉冲响应特性,为电磁脉冲干扰防护元件的选型提供科学依据,分别基于百ns和2 ns上升前沿电磁脉冲直接注入的方式,实验测试并对比分析两类元件在不同脉冲上升沿时间、电压幅值等情况下的响应差异,并阐明产生过冲响应差异的物理机理。结果表明:两类防护元件的响应时间均与注入纳秒脉冲上升沿时间有关,且随着上升沿的增加而变长,其中TVS二极管在相同上升脉冲情况下具有更为敏感的响应速度;当注入脉冲电压幅值增加时,PN结热积累加快,击穿速度加快,元件响应时间更短,相比于TVS稳定的钳位幅值,压敏电阻在钳位幅值附近处振荡明显;当快速脉冲到达时,压敏电阻和TVS二极管响应曲线在钳位幅值稳定前均发生过冲现象,并且两类防护元件的过冲电压均随着注入脉冲幅值的增加而增加;尽管钳位电压幅值由自身防护特性决定,但在相同注入脉冲条件下,同类不同型号的防护元件过冲电压几乎相同,通常压敏电阻过冲电压小于钳位电压,而TVS二极管则相反,并且随着钳位幅值变小,过冲电压与钳位电压的比值变大,这意味着过冲现象对低压TVS二极管性能影响更为严重。  相似文献   

11.
陡化前沿Marx发生器的阻抗特性   总被引:2,自引:2,他引:0  
 利用50 kV无感电容器与固体电阻制作了10级陡化前沿Marx发生器,实现了电容储能型脉冲功率调制系统的小型化。使用不同阻值的水电阻负载研究了发生器的阻抗特性,并进一步制作了金属膜电阻负载进行实验,测定90 Ω负载可以使发生器处于临界阻尼放电状态,从而确定发生器的内部阻抗约为45 Ω。当充电电压为40 kV时,在金属膜电阻负载上得到了幅值约为210 kV,脉宽约为40 ns,前沿约为5 ns的快前沿高压脉冲。利用此发生器成功地驱动了强流二极管,当二极管阴阳极间距为15 mm时,在30 kV充电情况下,其输出电压约为154 kV,束流约为1 kA。  相似文献   

12.
MHz重复频率固体调制器实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
 能产生短脉冲、快上升沿、快下降沿、大电流、能工作在MHz重复频率的固体调制器是脉冲功率技术的一个重要发展方向。介绍了功率MOSFET器件组成的固体调制器的原理以及实验结果,该调制器由多个固体开关模块组成,每个固体开关模块由6个并联的MOSFET开关组成以增大输出电流。固体开关模块采用感应叠加的方式得到高的输出电压。设计的调制器有很快的上升时间与下降时间,其输出脉冲宽度可调并且可以工作在2.5 MHz的重复频率下。在51 Ω的纯电阻负载下,由9个叠加模块组成的调制器可以输出6.2 kV的脉冲电压,脉冲前沿为20 ns。  相似文献   

13.
针对ns级脉冲电流信号的测量,设计了一种带磁芯的新型自积分式罗氏线圈,具有信噪比高、动态范围广等优点。屏蔽盒开气隙防止涡流。屏蔽盒外层采用聚氨酯进行整体封装,聚氨酯层厚度大于1.5 mm,可耐受大于20 kV的冲击电压。采用高压方波发生器与Pearson4100线圈对罗氏线圈标定。罗氏线圈的参数为:灵敏度0.018 8 V/A,最高上升时间小于20 ns,方波脉宽300 ns,最大峰值电流300 A。  相似文献   

14.
A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.  相似文献   

15.
利用基于SOS的固态脉冲功率源进行了Ka波段相对论返波管振荡器(RBWO)的实验研究。该固态脉冲功率源工作电压200~360 kV,工作电流约2.6 kA,脉宽约20 ns,脉冲上升前沿约9 ns。SOS固态脉冲功率源驱动Ka波段BWO的实验结果为:微波频率36~38 GHz,脉宽约10 ns,峰值功率约50 MW,重复频率10 Hz。  相似文献   

16.
设计了基于Blumlein脉冲成形网络(PFN)的紧凑型长脉冲功率模块。该模块将两路阻抗各为20Ω的Blumlein脉冲形成网络对称连接于LTD的初级绕组上,并采用同一个气体开关驱动,以保证两路PFN工作同步。PFN采用直角弯折"L"型结构,这种结构既保证了PFN与开关连接紧凑,又将模块横向尺寸缩减至最短,且对输出脉冲波形影响不大。实验结果表明,研制的长脉冲功率模块在10Ω负载上输出脉冲幅值约为135kV,半高宽约为180ns,前沿约为50ns,平顶约为100ns,重复脉冲频率可达到25Hz。  相似文献   

17.
本文主要简介我国变象管、双近贴象增强器毫微秒分幅相机的研制现状,并讨论这些相机的快门脉冲发生器电路。同时还介绍了用于带微通道板光电倍增管的选通电路。这些电路作适当修改后可用于微光硅靶摄象管的控制,高压电器特性试验,毫微秒脉冲源以及激光调制等场合中。  相似文献   

18.
研制了一种用于多狭缝条纹相机的条纹变像管快门脉冲产生器.以绝缘栅场效应管作为开关,采用截波法实现,克服了以雪崩晶体管为开关的储能电缆放电方法的缺点,具有体积小,脉宽连续可调,电源利用率高等优点.在10 pF负载下,获得矩形负脉冲,脉冲下降沿16 ns,上升沿20 ns,触发延时26 ns,脉冲输出幅度800 V,半高全宽最小100 ns.  相似文献   

19.
重复频率脉冲功率系统触发器设计   总被引:4,自引:3,他引:1       下载免费PDF全文
根据重复频率脉冲功率系统中大功率开关器件氢闸流管的触发原理,针对选用的氢闸流管VE4147的触发要求,设计了直流偏压-150 V、空载电压2 000 V、脉冲电流10 A、脉冲宽度800 ns、重复频率10 kHz的触发器。设计中着重从增强抗干扰能力、降低功耗、改善散热等方面进行考虑,保证触发器以10 kHz的重复频率持续工作,已经应用于100 kV/2 kHz高压脉冲电源、70 kV/10 kHz氢闸流管老练平台、150 kV/1 kHz可调脉宽电晕等离子体驱动源等多个重复频率脉冲功率系统中。  相似文献   

20.
焦毅  姜松  王永刚  饶俊峰 《强激光与粒子束》2023,35(5):055002-1-055002-6
随着脉冲功率技术的发展,纳秒脉冲电场被逐渐应用到等离子体水处理、不可逆电穿孔肿瘤消融等技术中。为了满足纳秒脉冲的应用需求,电源需要输出十几kV高压,拥有纳秒窄脉宽和快速的上升沿,同时尽量减小电源体积,降低成本。该纳秒脉冲电源采用电感隔离型Marx发生器结构,电路可以实现模块化叠加,电感隔离可以减少开关数量,抬升充电电压,以获得更高的电压输出。所设计的驱动电路仅需一路控制信号和一个直流供电模块,经功率放大和磁隔离后可同时控制所有放电管,该驱动电路结构简单、成本低、体积小,耐压水平高。所设计的24级电源样机,在50 kΩ阻性负载上,可输出0~14 kV电压,频率0.5~1 kHz,脉宽500 ns。该电源主电路的长宽高尺寸仅为23 cm×10 cm×12 cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号