首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
We show experimentally that the route to chaos is via intermittency in a shear-thinning wormlike micellar system of cetyltrimethylammonium tosylate, where the strength of flow-concentration coupling is tuned by the addition of salt sodium chloride. A Poincaré first return map of the time series and the probability distribution of laminar lengths between burst events shows that our data is consistent with type-II intermittency. The coupling of flow to concentration fluctuations is evidenced by the "butterfly" intensity pattern in small angle light scattering (SALS) measurements performed simultaneously with the rheological measurements. The scattered depolarized intensity in SALS, sensitive to orientational order fluctuations, shows the same time dependence (like intermittency) as that of shear stress.  相似文献   

2.
The technique of intermittency expansions is applied to derive an exact formal power series representation for the Mellin transform of the probability distribution of the limit lognormal multifractal process. The negative integral moments are computed by a novel product formula of Selberg type. The power series is summed in general by means of its small intermittency asymptotic. The resulting integral formula for the Mellin transform is conjectured to be valid at all levels of intermittency. The conjecture is verified partially by proving that the integral formula reproduces known results for the positive and negative integral moments of the limit lognormal distribution and gives a valid characteristic function of the Lévy-Khinchine type for the logarithm of the distribution. The moment problem for the logarithm of the distribution is shown to be determinate, whereas the moment problems for the distribution and its reciprocal are shown to be indeterminate. The conjecture is used to represent the Mellin transform as an infinite product of gamma factors generalizing Selberg’s finite product. The conjectured probability density functions of the limit lognormal distribution and its logarithm are computed numerically by the inverse Fourier transform.  相似文献   

3.
Soft matter, like colloidal suspensions and surfactant gels, exhibit strong response to modest external perturbations. This paper reviews our recent experiments on the nonlinear flow behaviour of surfactant worm-like micellar gels. A rich dynamic behaviour exhibiting regular, quasi-periodic, intermittency and chaos is observed. In particular, we have shown experimentally that the route to chaos is via Type-II intermittency in shear thinning worm-like micellar solution of cetyltrimethylammonium tosylate where the strength of flow-concentration coupling is tuned by the addition of sodium chloride. A Poincaré first return map of the time series and the probability distribution of laminar length between burst events show that our data are consistent with Type-II intermittency. The existence of a ‘Butterfly’ intensity pattern in small angle light scattering (SALS) measurements performed simultaneously with the rheological measurements confirms the coupling of flow to concentration fluctuations in the system under study. The scattered depolarised intensity in SALS, sensitive to orientational order fluctuations, shows the same time-dependence (like intermittency) as that of shear stress.  相似文献   

4.
We report the observation of intermittency in gravity-capillary wave turbulence on the surface of mercury. We measure the temporal fluctuations of surface wave amplitude at a given location. We show that the shape of the probability density function of the local slope increments of the surface waves strongly changes across the time scales. The related structure functions and the flatness are found to be power laws of the time scale on more than one decade. The exponents of these power laws increase nonlinearly with the order of the structure function. All these observations show the intermittent nature of the increments of the local slope in wave turbulence. We discuss the possible origin of this intermittency.  相似文献   

5.
The statistical properties of the streamwise velocity fluctuations in a fully developed turbulent channel flow are studied experimentally by means of single hot wire measurements. The intermittency features, studied through the scaling of the moments of the velocity structure function computed using the extended self- similarity and through the probability density function of the wavelet coefficients, are found to be dependent on the distance from the wall. The maximum intermittency effects are observed in the region between the buffer layer and the inner part of the logarithmic region where it is known that the bursting phenomenon, related to coherent structures such as low speed streaks and streamwise vortices, is the dominant dynamical feature. An eduction technique based on wavelet transform for identification of organized motion is developed and used to analyze the turbulent signals. Streamwise velocity conditional averages computed on events educed with the proposed method are reported. Events responsible for intermittency are found to consist of regions of high velocity gradients and are directly correlated with the observed increase of intermittency close to the wall.  相似文献   

6.
We present experimental Lagrangian statistics of finite sized, neutrally bouyant, particles transported in an isotropic turbulent flow. The particle's diameter is varied over turbulent inertial scales. Finite size effects are shown not to be trivially related to velocity intermittency. The global shape of the particle's acceleration probability density functions is not found to depend significantly on its size while the particle's acceleration variance decreases as it becomes larger in quantitative agreement with the classical k(-7/3) scaling for the spectrum of Eulerian pressure fluctuations in the carrier flow.  相似文献   

7.
A bifurcating system subject to multiplicative noise can display on-off intermittency. Using a canonical example, we investigate the extreme sensitivity of the intermittent behavior to the nature of the noise. Through a perturbative expansion and numerical studies of the probability density function of the unstable mode, we show that intermittency is controlled by the ratio between the departure from onset and the value of the noise spectrum at zero frequency. Reducing the noise spectrum at zero frequency shrinks the intermittency regime drastically. This effect also modifies the distribution of the duration that the system spends in the off phase. Mechanisms and applications to more complex bifurcating systems are discussed.  相似文献   

8.
单事件的间歇分析   总被引:1,自引:0,他引:1  
胡源  刘连寿 《中国物理 C》1998,22(2):122-132
通过研究高能碰撞单事件间歇的分布情况,探讨了单事件间歇与相空间分割数及末态多重数之间的关系,给出了为能尽量消除统计起伏,得到反映单个事件动力学起伏的单事件间歇值所需满足的条件和应采用的方法.  相似文献   

9.
《Physica A》2006,365(1):190-196
The formula for probability density functions (PDFs) has been extended to include PDF for energy dissipation rates in addition to other PDFs such as for velocity fluctuations, velocity derivatives, fluid particle accelerations, energy transfer rates, etc., and it is shown that the formula actually explains various PDFs extracted from direct numerical simulations and experiments performed in a wind tunnel. It is also shown that the formula with appropriate zooming increment corresponding to experimental situation gives a new route to obtain the scaling exponents of velocity structure function, including intermittency exponent, out of PDFs of velocity fluctuations.  相似文献   

10.
The coherence function of sound waves propagating through an intermittently turbulent atmosphere is calculated theoretically. Intermittency mechanisms due to both the turbulent energy cascade (intrinsic intermittency) and spatially uneven production (global intermittency) are modeled using ensembles of quasiwavelets (QWs), which are analogous to turbulent eddies. The intrinsic intermittency is associated with decreasing spatial density (packing fraction) of the QWs with decreasing size. Global intermittency is introduced by allowing the local strength of the turbulence, as manifested by the amplitudes of the QWs, to vary in space according to superimposed Markov processes. The resulting turbulence spectrum is then used to evaluate the coherence function of a plane sound wave undergoing line-of-sight propagation. Predictions are made by a general simulation method and by an analytical derivation valid in the limit of Gaussian fluctuations in signal phase. It is shown that the average coherence function increases as a result of both intrinsic and global intermittency. When global intermittency is very strong, signal phase fluctuations become highly non-Gaussian and the average coherence is dominated by episodes with weak turbulence.  相似文献   

11.
Simple models show that in Type-I intermittency a characteristic U-shaped probability distribution is obtained for the laminar phase length. The laminar phase length distribution characteristic for Type-I intermittency may be obtained in human heart rate variability data for some cases of pathology. The heart and its regulatory systems are presumed to be both noisy and non-stationary. Although the effect of additive noise on the laminar phase distribution in Type-I intermittency is well-known, the effect of neither multiplicative noise nor non-stationarity have been studied. We first discuss the properties of two classes of models of Type-I intermittency: (a) the control parameter of the logistic map is changed dichotomously from a value within the intermittency range to just below the bifurcation point and back; (b) the control parameter is changed randomly within the same parameter range as in the model class (a). We show that the properties of both models are different from those obtained for Type-I intermittency in the presence of additive noise. The two models help to explain some of the features seen in the intermittency in human heart rate variability.  相似文献   

12.
The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow is investigated by means of direct numerical simulations. The focus is on deviations from the Richardson eddy-diffusivity model and in particular on the strong fluctuations experienced by tracers. Evidence is obtained that the distribution of distances attains an almost self-similar regime characterized by a very weak intermittency. The timescale of convergence to this behavior is found to be given by the kinetic energy dissipation time measured at the scale of the initial separation. Conversely the velocity differences between tracers are displaying a strongly anomalous behavior whose scaling properties are very close to that of Lagrangian structure functions. These violent fluctuations are interpreted geometrically and are shown to be responsible for a long-term memory of the initial separation. Despite this strong intermittency, it is found that the mixed moment defined by the ratio between the cube of the longitudinal velocity difference and the distance attains a statistically stationary regime on very short timescales. These results are brought together to address the question of violent events in the distribution of distances. It is found that distances much larger than the average are reached by pairs that have always separated faster since the initial time. They contribute a stretched exponential behavior in the large-value tail of the inter-tracer distance probability distribution. At large times this tail is found to be closer to a pure exponential than to the form obtained from the Richardson diffusive approach. At the same time, the distance distribution displays a time-dependent power-law behavior at very small values, which is interpreted in terms of fractal geometry. It is argued and demonstrated numerically that the exponent converges to one at large time, again in conflict with Richardson’s distribution.  相似文献   

13.
Didier Sornette   《Physica A》1998,250(1-4)
Stochastic processes with multiplicative noise have been studied independently in several different contexts over the past decades. We focus on the regime, found for a generic set of control parameters, in which stochastic processes with multiplicative noise produce intermittency of a special kind, characterized by a power law probability density distribution. We present a review of applications, highlight the common physical mechanism and summarize the main known results. The distribution and statistical properties of the duration of intermittent bursts are also characterized in detail.  相似文献   

14.
We present the results of studying the multifractal structure of intermittency in a developed ionospheric turbulence during special experiments on radio-raying of the midlatitude ionosphere by signals from orbital satellites in 2005–2006. It is shown, in particular, that the determination of multidimensional structural functions of the energy fluctuations of received signals permits one to obtain the necessary information on multifractal spectra of the studied process of radio-wave scattering in the ionosphere. Experimental data on multifractal spectra of slow fluctuations in the received-signal energy under conditions of a developed small-scale turbulence are compared with the existing concept of the radio-wave scattering within the framework of the statistical theory of radio-wave propagation in the ionosphere. It is inferred that under conditions of a developed ionospheric turbulence, the multifractal structure of the intermittency of slow fluctuations in the received-signal energy is a consequence of the intermittency of small-scale fluctuations in the electron number density of the ionospheric plasma on relatively large spatial scales of about several ten kilometers. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 6, pp. 485–493, June 2008.  相似文献   

15.
It is suggested that measurements of fluctuations of the moments of particle density may be helpful in the search for the origin of intermittency. These fluctuations are calculated for the random cascade model. They are related to the moments themselves by relations, which do not depend on the parameters of the model and thus provide a valuable test of random cascading. A simple method of comparing the predictions with experiment is proposed.  相似文献   

16.
An analysis of local fluctuations, or spikes, is performed for charged particles produced in central C-Cu collisions at 4.5 GeV/c/nucleon. The distributions of spike centers and the maximum density distributions are investigated for different narrow pseudorapidity windows to search for multiparticle dynamical correlations. Two peaks over statistical background are observed in the spike-center distributions with the structure similar to that expected from the coherent gluon radiation model and recently found in hadronic interactions. The dynamical contribution to maximum density fluctuations is obtained to be hidden by statistical correlations, although behavior of the distributions shows qualitative agreement with that from the one-dimensional intermittency model. The observed features of the two different approaches, coherent vs. stochastic, to the formation of the local dynamical fluctuations are discussed.  相似文献   

17.
陈京元  陈式刚  王光瑞 《物理学报》2005,54(7):3132-3139
为了研究大气湍流间歇性的光传播效应,构造出一种比较简单的非Gauss场模型(Poission场 )用于描述大气介电常数(或折射率)随机起伏.模型特征泛函含有四个待定函数,根据大气湍 流的统计均匀性,介电起伏的单点概率分布函数,以及介电起伏能谱可以选择或确定它们. 对在这种简化湍流中传播的光波平均场及二阶统计矩性质进行了理论分析,并给出数值模拟 的一个简单例子. 关键词: 光波传播 大气湍流 间歇性  相似文献   

18.
本文举例指出,落入快度区间的概率本身具有某种分布,并不一定能导致阶乘矩随区间长度变化的指数律,因此,不是导致Intermittency行为的充分条件.  相似文献   

19.
20.
We studied the nature of fluctuations around the phase transition of vehicular traffic by analyzing a time series of successive variations of velocity, obtained from single-vehicle data measured by an onboard apparatus. We found that the probability density function calculated from the time series of variation of velocity is transformed irreversibly in the critical region, where a Gaussian distribution changes into a Lévy stable symmetrical distribution. The power-law tail in the Lévy distribution indicated that the time series of velocity variation exhibits the nature of the critical fluctuations generally observed in phase transitions driven far from equilibrium. Furthermore, single-vehicle data enabled us to calculate the time evolution of the local flux–density relation, which suggested that the vehicular traffic system spontaneously approaches a delicate balance between metastable states and congested-flow states. The nature of fluctuations enables us to understand mechanisms behind the spontaneous decay of the metastable branch at the phase transition. The power-law tail in the probability density function suggests that dynamical processes of vehicular traffic in the critical region are related to a time-discrete stochastic process driven by random amplification with additive external noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号