首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丁迎春  陈敏  高秀英  蒋孟衡 《中国物理 B》2012,21(6):67101-067101
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod- ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4.  相似文献   

2.
The elastic constant,structural phase transition,and effect of metallic bonding on the hardness of RhN 2 under high pressure are investigated through the first-principles calculation by means of the pseudopotential plane-wave method.Three structures are chosen to investigate for RhN 2,namely,simple hexagonal P6/mmm(denoted as SH),orthorhombic Pnnm(marcasite),and simple tetragonal P4/mbm(denoted as ST).Our calculations show that the SH phase is energetically more stable than the other two phases at zero pressure.On the basis of the third-order Birch-Murnaghan equation of states,we find that the phase transition pressures from an SH to a marcasite structure and from a marcasite to an ST structure are 1.09 GPa and 354.57 GPa,respectively.Elastic constants,formation enthalpies,shear modulus,Young’s modulus,and Debye temperature of RhN 2 are derived.The calculated values are,generally speaking,in good agreement with the previous theoretical results.Meanwhile,it is found that the pressure has an important influence on physical properties.Moreover,the effect of metallic bonding on the hardness of RhN 2 is investigated.This is a quantitative investigation on the structural properties of RhN 2,and it still awaits experimental confirmation.  相似文献   

3.
With the formation of structural vacancies,zirconium nitrides(key materials for cutting coatings,super wearresistance,and thermal barrier coatings) display a variety of compositions and phases featuring both cation and nitrogen enrichment.This study presents a systematic exploration of the stable crystal structures of zirconium heminitride combining the evolutionary algorithm method and ab initio density functional theory calculations at pressures of 0 GPa,30 GPa,60 GPa,90 GPa,120 GPa,150 GPa,and 200 GPa.In addition to the previously proposed phases P42/mnm-,Pnnn-,and Cmcm-Zr2 N,five new high-pressure Zr2N phases of PA/nmm,IA/mcm,P21/m,P3 m1,and C2/m are discovered.An enthalpy study of these candidate configurations reveals various structural phase transformations of Zr2 N under pressure.By calculating the elastic constants and phonon dispersion,the mechanical and dynamical stabilities of all predicted structures are examined at ambient and high pressures.To understand the structure-property relationships,the mechanical properties of all Zr2N compounds are investigated,including the elastic moduli,Vickers hardness,and directional dependence of Young’s modulus.The Cmncm-Zr2 N phase is found to belong to the brittle materials and has the highest Vickers hardness(12.9 GPa) among all candidate phases,while the I4/mcm-Zr2 N phase is the most ductile and has the lowest Vickers hardness(2.1 GPa).Furthermore,the electronic mechanism underlying the diverse mechanical behaviors of Zr2 N structures is discussed by analyzing the partial density of states.  相似文献   

4.
The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.  相似文献   

5.
The I–V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interfacial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interfacial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interfacial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.  相似文献   

6.
Materials with the formula Yb 2-xAlxMo3O12(x =0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, and 1.8) were synthesized and their structures, phase transitions, and hygroscopicity investigated using X-ray powder diffrac- tion, Raman spectroscopy, and thermal analysis. It is shown that Yb2-xAlxMo3O12 solid solutions crystallize in a single monoclinic phase for 1.7 ≤ x ≤ 2.0 and in a single orthorhombic phase for 0.0 ≤ x ≤ 0.4, and exhibit the characteristics of both monoclinic and orthorhombic structures outside these compositional ranges. The monoclinic to orthorhombic phase transition temperature of Al2Mo3O12 can be reduced by partial substitution of Al 3+ by Yb3+, and the Yb2-x AlxMo3O12 (0.0 < x ≤ 2.0) materials are hydrated at room temperature and contain two kinds of water species. One of these interacts strongly with and hinders the motions of the polyhedra, while the other does not. The partial substitution of Al3+ for Yb3+ in Yb2Mo3O12 decreases its hygroscopicity, and the linear thermal expansion co- efficients after complete removal of water species are measured to be 9.1×10 6 /K, 5.5×10 6 /K, 5.74×10 6 /K, and 9.5 × 10 6 /K for Yb1.8 Al0.2 (MoO4)3 , Yb1.6Al0.4 (MoO4 )3, Yb0.4 Al1.6 (MoO4)3 , and Yb 0.2Al1.8 (MoO4)3 , respectively.  相似文献   

7.
In the present work,we adopt the ccsd/6-31g(d) method to optimize the ground state structure and calculate the vibrational frequency of the Si2N molecule.The calculated frequencies accord satisfactorily with the experimental values,which helps confirm the ground state structure of the molecule.In order to find how the external electric field affects the Si2N molecule,we use the density functional method B3P86/6-31g(d) to optimize the ground state structure and the time-dependent density functional theory TDDFT/6-31g(d) to study the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule under different external electric fields.It is found that the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule are affected by the external electric field.One of the valuable results is that the absorption spectra of the yellow and the blue-violet light of the Si2N molecule each have a red shift under the electric field.The luminescence mechanism in the visible light region of the Si2N molecule is also investigated and compared with the experimental data.  相似文献   

8.
The potential energy surface of a CO 2 –N 2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. Ref. Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2–N2 mixture are presented in a temperature range from 273.15 K to 3273.15 K at low density by employing the Chapman–Enskog scheme and the Wang Chang–Uhlenbeck–de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.  相似文献   

9.
Zirconia (ZrO2) thin films were deposited by metal organic chemical vapor deposition (MOCVD) on (1 0 0) Si over temperature and pressure ranges from 700 to 900 °C and 100 to 2000 Pa, respectively. The oxide films were characterized by field emission microscopy and X-ray diffraction so that microstructure and ratios of monoclinic and tetragonal phases could be estimated according to the process conditions. The mechanical behaviour of the substrate-film systems was investigated using Vickers micro-indentation and Berkovitch nano-indentation tests. The characteristics of silicon are not modified by the presence of a thin film of silicon oxide (10 nm), formed in the reactor during heating. Young's modulus and the hardness of tetragonal zirconia phase, 220 and 15 GPa, respectively, are greater than values obtained for monoclinic phase, 160 and 7 GPa, respectively. The zirconia films are well adherent and the toughness of tetragonal zirconia phase is greater than that of monoclinic phase.  相似文献   

10.
A Raman frequency upshift in the nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in the Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm) layers are deposited by high-vacuum radio-frequency magnetron sputtering on quartz and sapphire substrates at different temperatures. The samples are then annealed in N2 atmosphere at 1100°C for 1 h for Si crystallization. It is demonstrated that the presence of a supporting substrate at the high growth temperature can induce different types of stresses in the Si nanocrystal layers. The strain is attributed to the difference in the thermal expansion coefficient between the substrate and the Si/SiO2 SL film. Such a substrate-induced stress indicates a new method for tuning the optical and electronic properties of Si nanocrystals for strained engineering.  相似文献   

11.
A rare-earth free upconversion luminescent material, 10BaF 2 :NaF, Na 3 AlF 6 , is synthesized by a hydrothermal method. The study of fluorescent spectrum indicates that it can convert visible light (550 nm–610 nm) into ultraviolet light (290 nm–350 nm), and two emission peaks at 304 nm and 324 nm are observed under the excitation of 583 nm at room temperature. Subsequently, 10BaF 2 :NaF, Na 3 AlF 6 /TiO 2 composite photocatalyst is prepared and its catalytic activity is evaluated by the photocatalytic reduction of CO 2 under visible light irradiation (λ > 515 nm). The results show that 10BaF 2 :NaF, Na 3 AlF 6 /TiO 2 is a more effective photocatalyst for CO 2 reduction than pure TiO 2 , their corresponding methanol yields are 179 and 0 μmol/g-cat under the same conditions. Additionally, the mechanism of photocatalytic reduction of CO 2 on 10BaF 2 :NaF, Na 3 AlF 6 /TiO 2 is proposed.  相似文献   

12.
(Fe50Co25B15Si10)80Cu20 ribbons are prepared by using the single-roller melt-spinning method.A dual-layer structure consisting of a(Fe,Co)-rich amorphous phase and a Cu-rich crystalline phase forms due to metastable liquid phase separation before solidification.The magnetic hysteresis loops of the as-quenched and annealed samples are measured at room temperature.It is indicated that the coercivity of the ribbon is almost zero in the as-quenched state.The crystallization leads to the increase of coercivity and decrease of saturation magnetization.  相似文献   

13.
The structural stability, mechanical properties and thermodynamic parameters such as Debye temperature, minimum thermal conductivities of orthorhombic-A2N2O (A=C, Si and Ge) are calculated by first principles calculations based on density functional theory. The calculated lattice parameters, elastic constants of Si2N2O and Ge2N2O using PBEsol function are consisted with the experimental data and other calculated values. The full set elastic constants of the orthorhombic-A2N2O (A=C, Si and Ge) are calculated by stress–strain method. The mechanical moduli (bulk modulus, shear modulus and Young's modulus) are evaluated by the Voigt–Reuss–Hill approach. The orthorhombic-C2N2O exhibits larger mechanical moduli than the other two structures. The hardness of orthorhombic-A2N2O (A=C, Si and Ge) is evaluated according to the intrinsic hardness calculation theory of covalent crystal relying on Mulliken overlap population. The results indicate that the orthorhombic-C2N2O is a super hard material. Furthermore, the mechanical anisotropy, Debye temperature and minimum thermal conductivity of the orthorhombic-A2N2O (A=C, Si and Ge) have been estimated by empirical methods. The orthorhombic-Ge2N2O shows the lowest thermal conductivity, which may have useful applications as gas turbine engines and diesel engines.  相似文献   

14.
A new model of the elastic matching of phases is proposed, and heterophase structures near the morphotropic phase boundary in 0.10PbTiO3-0.90Pb(Zn1/3Nb2/3)O3 crystals are studied. Unique behavior of the unit cell parameters is found to favor the elastic matching of the ferroelectric tetragonal and orthorhombic phases under the conditions of complete or partial relaxation of internal mechanical stresses at a volume concentration ratio of these phases of about 20/80% and temperatures of T=20–300 K. Interrelations between the volume concentrations of different domain (twin) types and of the coexisting phases are analyzed.  相似文献   

15.
陈刚  ;高尚鹏 《中国物理 B》2012,(10):384-390
The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interaction between layers.The corrugated structure is found to be energetically favorable for both the pure and the S-doped graphitic C3N4.The S doptant is prone to substitute the N atom bonded with only two nearest C atoms.The band structure calculation reveals that this kind of S doping causes a favorable red shift of the light absorption threshold and can improve the electroconductibility and the photocatalytic activity of the graphitic C3N4.  相似文献   

16.
Molecular structure, vibrational frequency and infrared intensity of UF 6 are investigated by using the revised Perdew-Burke-Enzerhof function with the triple-zeta polarized basis set. The calculation results are in good agreement with the experimental values and indicate the existence of a stable U2F6 molecule with a multiple bonded U2 unit. The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h . The optimized geometries, vibrational frequencies, and infrared intensities are also reported for U2F6 molecules in D3d symmetry. In addition, the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method. The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.  相似文献   

17.
The N-doping effects on the electronic properties of Cu2O crystals are investigated using density functional theory.The calculated results show that N-doped Cu2O with or without oxygen vacancy exhibits different modifications of electronic band structure.In N anion-doped Cu2O,some N 2p states overlap and mix with the O2p valence band,leading to a slight narrowing of band gap compared with the undoped Cu2O.However,it is found that the coexistence of both N impurity and oxygen vacancy contributes to band gap widening which may account for the experimentally observed optical band gap widening by N doping.  相似文献   

18.
Yb:Sc2O3 transparent ceramics are fabricated by a conventional ceramic process and sintering in H2 atmosphere. The room-temperature spectroscopic properties are investigated, and the Raman spectrum shows an obvious vibration characteristic band centred at 415 cm 1 . There are three broad absorption bands around 891, 937, and 971 nm, respectively. The strongest emission peak is centred at 1.04 μm with a broad bandwidth (11 nm) and an emission cross-section of 1.8×10 20 cm 2 . The gain coefficient implies a possible laser ability in a range from 990 nm to 1425 nm. The energy-level structure shows that Yb:Sc 2 O 3 ceramics have large Stark splitting at the ground state level due to their strong crystal field. All the results show that Yb:Sc2O3 transparent ceramics are a promising material for short pulse lasers.  相似文献   

19.
From the sound velocity measured using the Brillouin scattering technique,the elastic,piezoelectric,and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room temperature.The elastic constants are in fairly good agreement with those of the BaTiO3 single crystal,measured previously by Brillouin scattering and the low-frequency equivalent circuit methods.However,their electromechanical properties are significantly different.Based on the sound propagation equations and these results,the directional dependence of the compressional modulus and the shear modulus of Rh:BaTiO3 in the(010) plane is investigated.Some properties of sound propagation and electromechanical coupling in the crystal are discussed.  相似文献   

20.
In this work, new ternary cubic spinel structures are designed by the substitutional method. The structures, elasticity properties, intrinsic hardness and Debye temperature of the cubic ternary spinel nitrides are studied by first principles based on the density-functional theory. The results show that γ-CSn2N4, γ-SiC2N4, γ-GeC2N4 and γ-SnC2N4 are not mechanically stable. The elastic constants Cij of these cubic spinel structures are obtained using the stress–strain method. Derived elastic constants, such as bulk modulus, shear modulus, Young's modulus, Poisson coefficient and brittle/ductile behaviour are estimated using Voigt–Reuss–Hill theories. The B/G value, the Poisson's ratio and anisotropic factor are calculated for eight ternary stable crystals. Based on the microscopic hardness model, we further estimate the Vickers hardness of all the stable crystals. From the calculated hardness of the stable group IVA ternary spinel nitrides by Gao's and Jiang's methods, it is observed that the stable group IVA ternary spinel nitrides are not superhard materials except for γ-CSi2N4. Furthermore, the Debye temperature for the eight stable crystals is also estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号