首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent.  相似文献   

2.
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.  相似文献   

3.
Ultrasound-assisted solvent extraction (UAE) was applied to extract underutilized Madhuca longifolia seed oil. The effect of extraction time, temperature, solvent type, solvent/sample ratio, and amplitude on the oil yield and recovery were investigated. Approximately 56.97% of oil yield and 99.54% of oil recovery were attained using mild conditions of 35 min, 35 °C, 40% amplitude, isopropanol to acetone (1:1), and solvent to sample (20 mL/g). UAE oil yield and recovery were comparable with Soxhlet extraction (SXE) whilst mechanical pressing (ME) yielded < 50% of UAE recovery. UAE does not affect the fatty acids composition (46% C18:1; 22% C16:0; 21% C18:0, 10% C18:2), and triacylglycerol profile (23% POO, 17% POS, 16% SOO, and 14% POP). Interestingly, UAE extracted oil conferred remarkably (P < 0.05) higher antioxidant capacity (IC50 of DPPH 106.60 mg/mL and ABTS 39.80 mg/mL) than SXE (IC50 of DPPH 810.40 mg/mL and ABTS 757.43 mg/mL) or ME (IC50 of DPPH 622.38 mg/mL and ABTS 392.87 mg/mL).  相似文献   

4.
Salvilla is a widely distributed plant used in treatments against gastrointestinal disorders due to its phenolic antioxidant and anti-inflammatory potential. Major yield and quality of bioactive polyphenols must be obtained with no degradation during suitable processes such as Ultrasound-Assisted Extraction (UAE), which allows an efficient extraction of metabolites at appropriate parameter conditions. Salvilla extractions were made using UAE and aqueous ethanolic solutions. Variables used in UAE were sonication time, wave amplitude and percentage of ethanol in solvent. Extracts were tested for total flavonoids, antioxidant activity (ABTS, FRAP and ORAC) and an identification and quantification of phenolic compounds was carried out by UPLC-PDA-ESI-MS/MS. Once elected the better extraction conditions, an anti-inflammatory test was performed for this treatment. As a result, total flavonoids content in extracts was 147 to 288 µg catechin equivalents/mg of dry salvilla extract. All extracts have shown good antioxidant activity (86 to 280 mM Trolox eq/mg dry salvilla extract). Flavonoids contents by chromatography were higher than hydroxybenzoic and hydroxycinnamic acids specially the flavone, flavanol and flavanone groups. Treatment T6 (75% ethanol, 30% amplitude and 10 min extraction time) was the best extract in terms of significant flavonols, antioxidant activity, and higher anti-inflammatory potential.  相似文献   

5.
6.
In the cosmetic and pharmaceutical industries, it has been increasingly popular to use alternative solvents in the extraction of bioactive compounds from plants. Coffee pulp, a by-product of coffee production, contains different phenolic compounds with antioxidant properties. The effects of polyols, amplitude, extraction time, solvent concentration, and liquid–solid ratio on total phenolic content (TPC) using ultrasound-assisted extraction (UAE) were examined by single-factor studies. Three main factors that impact TPC were selected to optimize the extraction conditions for total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and their antioxidant activities using the Box-Behnken design. Different extraction methods were compared, the bioactive compounds were identified and quantified by liquid chromatography triple quadrupole mass spectrometer (LC-QQQ), and the cytotoxicity and cellular antioxidant activities of the extract were studied. According to the response model, the optimal conditions for the extraction of antioxidants from coffee pulp were as follows: extraction time of 7.65 min, liquid–solid ratio of 22.22 mL/g, and solvent concentration of 46.71 %. Under optimized conditions, the values of TPC, TFC, TTC, 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, and Ferric reducing antioxidant power assay (FRAP) were 9.29 ± 0.02 mg GAE/g sample, 58.82 ± 1.38 mg QE/g sample, 8.69 ± 0.25 mg TAE/g sample, 7.56 ± 0.27 mg TEAC/g sample, 13.59 ± 0.25 mg TEAC/g sample, and 10.90 ± 0.24 mg FeSO4/g sample, respectively. Compared with other extraction conditions, UAE with propylene glycol extract (PG-UAE) was significantly higher in TPC, TFC, TTC, DPPH, ABTS, and FRAP response values than UAE with ethanol (EtOH-UAE), maceration with propylene glycol (PG-maceration), and maceration with ethanol (EtOH -maceration) (p < 0.05). Major bioactive compounds detected by LC-QQQ included chlorogenic acid, caffeine, and trigonelline. At higher concentrations starting from 5 mg/ml, PG-UAE extract showed higher cell viability than EtOH-UAE in both cytotoxicity and cellular antioxidant assays. The researcher expects that this new extraction technique developed in this work could produce a higher yield of bioactive compounds with higher biological activity. Therefore, they can be used as active ingredients in cosmetics (anti-aging products) and pharmaceutical applications (food supplements, treatment for oxidative stress-related diseases) with minimal use of chemicals and energy.  相似文献   

7.
Lycopene extraction was carried out via the ultrasonic assisted extraction (UAE) with response surface methodology (RSM). Sonication enhanced the efficiency of relative lycopene yield (enhancement of 26% extraction yield of lycopene in 6 replications at 40.0 min, 40.0 °C and 70.0% v/w in the presence of ultrasound), lowered the extraction temperature and shortened the total extraction time. The extraction was applied with the addition of oxygen-free nitrogen flow and change of water route during water bath sonication. The highest relative yield of lycopene obtained was 100% at 45.0 °C with total extraction time of 50.0 min (30:10:10) and ratio of solvent to freeze-dried tomato sample (v/w) of 80.0:1. Optimisation of the lycopene extraction had been performed, giving the average relative lycopene yield of 99% at 45.6 min, 47.6 °C and ratio of solvent to freeze-dried tomato sample (v/w) of 74.4:1. From the optimised model, the average yield of all-trans lycopene obtained was 5.11 ± 0.27 mg/g dry weight. The all-trans lycopene obtained from the high-performance liquid chromatography (HPLC) chromatograms was 96.81 ± 0.81% with 3.19 ± 0.81% of cis-lycopenes. The purity of total-lycopene obtained was 98.27 ± 0.52% with β-carotene constituted 1.73 ± 0.52% of the extract. The current improved, UAE of lycopene from tomatoes with the aid of RSM also enhanced the extraction yield of trans-lycopene by 75.93% compared to optimised conventional method of extraction. Hence, the current, improved UAE of lycopene promotes the extraction yield of lycopene and at the same time, minimises the degradation and isomerisation of lycopene.  相似文献   

8.
The possibility to valorize peach juice waste, either frozen or air-dried, through microwave (MAE) and ultrasound assisted extraction (UAE) was evaluated. MAE power, UAE amplitude and time were optimized using a 22-factorial design. For frozen waste, optimal MAE (540 W, 50 s) and UAE (23%, 120 s) processes gave extracts presenting analogous content (on 100 g dry matter) of polyphenols (309–317 mg GAE), flavonoids (94–120 mg QE), anthocyanins (8–9 mg CGE), and similar antioxidant activity (2.1–2.2 mg TE). Extracts from dried waste resulted higher in polyphenols (630–670 mg GAE) but lower in flavonoids (75–90 mg QE), anthocyanins and vitamin C (not detectable). Although developing an energy density 2-fold higher than that of UAE, MAE more efficaciously extracted vitamin C (108 mg/100 g dm) and required half extraction time (50 s). MAE would also be less impactful than UAE in terms of greenhouse gas emission and energy requirements on industrial scale. The industrial valorization of peach waste through the application of microwave or ultrasound assisted extraction requires quantitative data, able to encourage company interest and investment. This study not only identifies optimal MAE and UAE parameters to assist the extraction of peach waste bioactive compounds but also provides a preliminary estimation of the potential economic and environmental impact on an industrial scale of these technologies.  相似文献   

9.
An ultrasound assisted method was investigated to extract bioactive compounds from propolis. This method was based on a simple ultrasound treatment using ethanol as an extraction medium to facilitate the disruption of the propolis cells. Four different variables were chosen for determining the influence on the extraction efficiency: ultrasonic amplitude, ethanol concentration, temperature and time; the variables were selected by Box-Behnken design experiments. These parameters were optimised in order to obtain the highest yield, and the results exhibited the optimum conditions for achieving the goal as 100% amplitude of ultrasonic treatment, 70% solvent concentration, 58 °C and 30 min. The extraction yield under modified optimum extraction conditions was, as follows: 459.92 mg GAE/g of TPC, 220.62 mg QE/g of TFC and 1.95% of balsam content. The results showed that the ultrasound assisted extraction was suitable for bioactive compounds extraction from propolis. The most abundant phenolic compound was kaempferol (228.8 mg/g propolis) followed by myricetin (115.5 mg/g propolis), luteolin (27.2 mg/g propolis) and quercetin (25.2 mg/g propolis).  相似文献   

10.
It is reported that salvianolic acid B, a bioactive phenolic compound contained in the root of Salvia miltiorrhiza, exhibits a much stronger activity in free radical scavenging and antioxidance than those of vitamin E. When a conventional refluxing method is adopted to extract salvianolic acid B from the root, in which the materials are subjected to higher temperature and longer time, the yield of this phenolic compound is lower due to the possibility of its hydrolysis to tanshinol. However, a higher extraction yield can be achieved over a shorter time period and lower temperature when an ultrasound-assisted extraction method is used. This paper investigated the parameters influencing the extraction of salvianolic acid B. Factors such as extraction time, frequency of the ultrasound, the ratio of solvent to material, and types of extraction solvent were examined. A comparison was also conducted between conventional refluxing and ultrasound-assisted extraction. Results showed that the optimal parameters to extract salvianolic acid B from the root of S. miltiorrhiza were as follows: ultrasonic frequency: 45 Hz; solvent: 60% aqueous ethanol; extraction temperature: 30 °C; extraction time duration: 25 min.; ratio of solvent to material: 20:1 (v/w, ml/g). Under these conditions, the yield of salvianolic acid B was 5.17 mg/g (33.93 mg/g) higher than those with conventional refluxing method (28.76 mg/g), indicating that the efficiency and the yield of ultrasound-assisted extraction method are higher than reflux method, and the hydrolysis of salvianolic acid B to tanshinol is effectively avoided.  相似文献   

11.
Carotenoids are an essential component of cashew and can be used in pharmaceuticals, cosmetics, natural pigment, food additives, among other applications. The present work focuses on optimizing and comparing conventional and ultrasound-assisted extraction methods. Every optimization step took place with a 1:1 (w:w) mixture of yellow and red cashew apples lyophilized and ground in a cryogenic mill. A Simplex-centroid design was applied for both methods, and the solvents acetone, methanol, ethanol, and petroleum ether were evaluated. After choosing the extractor solvent, a central composite design was applied to optimize the sample mass (59–201 mg) and extraction time (6–34 min). The optimum conditions for the extractor solvent were 38% acetone, 30% ethanol, and 32% petroleum ether for CE and a mixture of 44% acetone and 56% methanol for UAE. The best experimental conditions for UAE were a sonication time of 19 min and a sample mass of 153 mg, while the CE was 23 min and 136 mg. Comparing red and yellow cashews, red cashews showed a higher carotenoid content in both methodologies. The UAE methodology was ca. 21% faster, presented a more straightforward composition of extracting solution, showed an average yield of superior carotenoid content in all samples compared to CE. Therefore, UAE has demonstrated a simple, efficient, fast, low-cost adjustment methodology and a reliable alternative for other applications involving these bioactive compounds in the studied or similar matrix.  相似文献   

12.
Ultrasound-assisted extraction (UAE) of antioxidant polyphenols from chicory grounds was studied in order to propose a suitable valorization of this food industry by-product. The main parameters influencing the extraction process were identified. A new mathematical model for multi-criteria optimization of UAE was proposed. This kinetic model permitted the following and the prediction of the yield of extracted polyphenols, the antioxidant activity of the obtained extracts and the energy consumption during the extraction process in wide ranges of temperature (20–60 °C), ethanol content in the solvent (0–60% (vol.) in ethanol–water mixtures) and ultrasound power (0–100 W). After experimental validation of the model, several simulations at different technological restrictions were performed to illustrate the potentiality of the model to find the optimal conditions for obtaining a given yield within minimal process duration or with minimal energy consumption. The advantage of ultrasound assistance was clearly demonstrated both for the reduction of extraction duration and for the reduction of energy consumption.  相似文献   

13.
Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.  相似文献   

14.
Ultrasound-assisted extraction (UAE) was applied for polyphenols extraction from Romanian propolis, followed by comparison with previous maceration work. The effects consisted not only in time reduction and extraction yield increase, but also in polyphenolics profile modification in terms of flavonoids / polyphenolic acids ratio. The operating parameters were ultrasounds (US) field exposure time (10–100 min), solvent composition (water, 25 % and 50 % ethanolic solutions, w/w), and liquid:solid ratio (2:1, 4:1 and 6:1, w:w), while keeping temperature constant. 24 polyphenolic derivatives were quantified by UHPLC-HRMS. UAE favored the extraction of pinocembrin, isorhamnetin and chrysin in water and 25 % ethanol, leading to different profiles than maceration, and further influences upon the antioxidant and antimicrobial activity. All extracts demonstrated increased antibacterial and antifungal activity compared to maceration, particularly the 50 % ethanolic extracts, which presented a three-times larger antioxidant capacity. Chemometric methods (Principal Component Analysis – PCA and Partial Least Squares Regression – PLS) and a saturation type model were used to correlate the polyphenolics profiles and antioxidant capacity. Experimental and modelling results concluded that 50 % ethanolic solutions and UAE represent the favorable operating conditions in terms of yield and extracts quality.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(6):2176-2184
Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120 kHz), ultrasonic power density (50, 100, 150 W/L) and extraction time (5, 15, 25 min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p < 0.05). The Box–Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40 kHz, a power density of 150 W/L and 25 min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31 mg GA/100 g fw for total phenolics and 2.04 mg quercetin/100 g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66 mg Trolox/100 g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors’ knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published.  相似文献   

16.
In this work, a four-factor five-level full factorial central composite design (CCD) was used to optimize the ultrasound-assisted extraction (UAE) of saffron major components, namely picrocrocin, safranal and crocin. The process parameters included ethanol concentration (0–100%), extraction time (2–10 min), duty cycle (0.2–1.0) and ultrasonic amplitude (20–100%). The extracted compounds were measured both by spectrophotometry and chromatography techniques. The results revealed that the middle concentrations of ethanol and relatively long process durations along with high duty cycles and ultrasonic amplitudes had the most profound impact on the yields of the extracted bioactives. UAE was optimized using response surface methodology (RSM) and artificial bee colony (ABC); a comparison between these methods indicated their optimization power was approximately the same. According to the RSM analysis, an ethanol concentration of 58.58%, extraction time of 6.85 min, duty cycle of 0.82 and amplitude of 91.11% were the optimum extraction conditions, while the optimal conditions resulting from ABC were 53.07%, 7.32 min, 0.93 and 100% for the UAE variables respectively. Finally, HPLC analysis was carried out on the UAE optimum extract resulting from RSM. Four crocetin esters were detected in the optimal extract.  相似文献   

17.
An ultrasound-assisted extraction (UAE) was optimized for the extraction of bioactive compound (total phenolic compound and total flavonoid content) with antioxidant activity (DPPH and FRAP assays) using response surface methodology based on Box-Behnken design (BBD). The effect of extraction temperature (X1: 30–70 °C), extraction time (X2: 25–45 min) and amplitude (X3: 30–50%) were determined. In addition, antimicrobial activity and application of optimized makiang seed extract (MSE) were also evaluated. Results showed that the optimum condition of UAE were X1: 51.82 °C, X2: 31.87 min and X3: 40.51%. It was also found that gallic acid was the major phenolic compound of optimized MSE and its minimum inhibitiory concentration (MIC) and minimum bactericidal concentration (MBC) was between 1.56 - 6.25 and 25–100 mg/mL respectively. The addition of MSE could enhance the stability of orange juice and shelf life extension was also obtained. This research finding suggests the beneficial opportunities for ultrasound-assisted extraction for the production of bioactive compound from makiang seed with antioxidant activity leading to an application in medicinal and functional food industry.  相似文献   

18.
The use of ultrasound-assisted extraction (UAE) for the extraction of chlorogenic acid (CA) from Cynara scolymus L., (artichoke) leaves using 80% methanol at room temperature over 15 min gave a significant increase in yield (up to a 50%) compared with maceration at room temperature and close to that obtained by boiling over the same time period. A note of caution is introduced when comparing UAE with Soxhlet extraction because, in the latter case, the liquid entering the Soxhlet extractor is more concentrated in methanol (nearly 100%) that the solvent in the reservoir (80% methanol) due to fractionation during distillation. The mechanism of UAE is discussed in terms of the effects of cavitation on the swelling index, solvent diffusion and the removal of a stagnant layer of solvent surrounding the plant material.  相似文献   

19.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

20.
A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography – diode array detector – mass spectroscopy (UPLC–DAD–MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm?2, temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号