首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionic liquids, ILs, based on fluorinated pyrrolidinium and piperidinium ammonium cations and imide anion were prepared and characterized. The physicochemical and electrochemical properties of these ILs including melting point, glass transition and degradation temperatures, viscosity, ionic conductivity, and electrochemical stability were determined and compared to alkyl pyrrolidinium and piperidinium ILs. The incorporation of a CF3 group instead of a CH3 induces an increase of the IL viscosity, thus a conductivity decrease. However, good ionic conductivity is obtained with fluorinated pyrrolidinium IL. Cyclic amine ILs with propyl alkyl chain or fluorinated ammonium exhibit very high electrochemical stability toward oxidation. The effect of the addition of LiTFSI on the IL properties was studied with the same methodology.  相似文献   

2.
In this study we have explored, by means of ab initio molecular dynamics, a subset of three different protic ionic liquids (ILs). We present both structural and dynamical information of the liquid state of these compounds as revealed by accurate ab initio computations of the interactions. Our analysis figures out the presence of a strong hydrogen bond network in the bulk state, that is more stable in those ILs characterised by a longer alkyl side chain. Indeed it becomes more long-lasting passing from ethyl ammonium to butyl ammonium, owing to the hydrophobic effects stemming from alkyl chain contacts. Furthermore, the relative free energy landscape of the cation–anion interaction exhibits a progressively deeper well as the side chain of the cation gets longer. The hydrogen bond interaction, as already mentioned in previous works, leads to loss of degeneracy of the asymmetric stretching vibrations of the nitrate anions. The resulting frequency splitting between the two normal modes is about 90 cm?1.  相似文献   

3.
ABSTRACT

The present study investigates the dissolution behaviour of cellulose and hemicellulose in potential ionic liquids (ILs) using both the quantum chemical and experimental validation. For converging upon the recommended IL, 1428 ILs consisting of 42 cations and 34 anions were studied with the conductor like screening model for real solvents (COSMO-RS) model. Based on the infinite dilution activity coefficient of the components in IL, the selected anions and cations were visualised by observing their interactions with cellulose and hemicellulose using interaction energies, natural bonding orbital analysis and molecular dynamics simulations. The dissolution order of cellulose and hemicellulose in ILs was primarily determined by the evaluation of hydrogen bonds between the oxygen atom of anion and hydroxyl proton of cellulose/hemicellulose. From this discernible fact, the anion of the IL was observed to play a leading role in the solvation process as compared to the cation. Eventually, acetate [OAc] anion and 1-ethyl-3-methylimidazolium [EMIM]+ cation were found to be good candidates for the dissolution of cellulose and hemicellulose. This was further confirmed by the measurement of solid-liquid equilibria with cellulose and hemicellulose. The regenerated cellulose powder was then characterised by Fourier transform spectroscopy(FTIR), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA).  相似文献   

4.
Hollow AlPO4‐5 spheres (E‐AP and B‐AP) are synthesized ionothermally in tri‐substituted imidazolium bromide ionic liquids (ILs), that is, 1‐ethyl‐2,3‐dimethylimidazolium bromide and 1‐butyl‐2,3‐dimethylimidazolium bromide, respectively. Moreover, the morphologies of the hollow AlPO4‐5 particles vary with the type of ILs and the amounts of ILs, phosphoric acid, amine, and hydrofluoric acid. The thicknesses of the shells of the hollow spheres are substantially affected by the length of the alkyl chain on the imidazole ring of the ILs. The shell thicknesses significantly increase from 300–500 nm to 4–5 µm as the alkyl chain length increases, and solid AlPO4‐5 spheres (H‐AP) are generated in 1‐hexyl‐2,3‐dimethylimidazolium bromide IL. Furthermore, the experimental results suggest that the formation of hollow AlPO4‐5 spheres in an IL is consistent with Ostwald ripening theory. In addition, compared with ordinary solid AlPO4‐5 (S‐AP) prepared by hydrothermal methods, the hollow E‐AP particles are small and spherical. Moreover, the Co‐loaded hollow AlPO4‐5 (Co/E‐AP) catalyst exhibits excellent catalytic activities in the selective oxidation of tetralin. The reaction conversions are 73.5 and 5.7% over the Co/E‐AP catalyst and Co‐loaded solid AlPO4‐5 (Co/S‐AP) catalyst, respectively, which means that the hollow structure facilitates the mass transfer of the reactants and products in the catalytic reaction.  相似文献   

5.
Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid–liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen–ferrates and halogen–aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.  相似文献   

6.
优化超声变幅杆的形状结构可有效地提高水域声场分布和空化区域,提升对水域超声空化效果。通过模拟分析发现传统超声变幅杆在水域中具有声场分布均匀性差、变幅杆端部声压高等特征,不利于声波在水域中传播。基于此,提出并优化设计了一种具有碟形结构的变幅杆,位于变幅杆的最大振幅处的碟形结构,有更大的振动位移;模拟表明其水域声场和声压均衡度显著优于传统变幅杆,铝箔空化腐蚀实验进一步证实了其水域中的声压分布均匀性。同时,实验通过铝箔的空化腐蚀、KI剂量测定及工件表面油渍去除对比了传统变幅杆和碟形变幅杆,分析表明碟形变幅杆所在水域中有较大的空化腐蚀区域,腐蚀速率明显提升,声化学反应速率提高,油渍去除程度增强,说明了设计的碟形变幅杆能够促进空化泡的产生,增加水域空化区域。  相似文献   

7.
Ionic liquids (ILs), also known as room-temperature molten salts, are solely composed of ions with melting points usually below 100 °C. Because of their low volatility and vast amounts of species, ILs can serve as ‘green solvents' and ‘designer solvents' to meet the requirements of various applications by fine-tuning their molecular structures. A good understanding of the phase behaviors of ILs is certainly fundamentally important in terms of their wide applications. This review intends to summarize the major conclusions so far drawn on phase behaviors of ILs by computational, theoretical, and experimental studies, illustrating the intrinsic relationship between their dual ionic and organic nature and the crystalline phases, nanoscale segregation liquid phase, IL crystal phases, as well as phase behaviors of their mixture with small organic molecules.  相似文献   

8.
The extraordinary high pressure and temperature produced during cavitation is crucial for ultrasonic sonochemistry. However, the cavitation effect is usually confined to a small zone nearby the ultrasonic horn, outside of which ultrasound produces much less effects on chemical reaction. In present work, in order to expand the range of effective zone and intensify the cavitation effect, N2 aeration was introduced to an ultrasonic polymerization process of CuO@PNIPAM in aqueous solution. By increasing the number of bubble nucleus gathered on the CuO surface and lowering the surface tension of the aqueous solution, the cavitation effect is intensified on the CuO surface within the whole reaction vessel, which benefits the covalently bonding between PNIPAM and CuO to a large degree and results in the formation of CuO@PNIPAM hybrid composite with excellent interfacial bonding. It is promising that the hybrid composite can be applied as temperature responsive glucose sensing platform with ON and OFF states due to the wettability change of PNIPAM versus temperature.  相似文献   

9.
Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5 MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications.  相似文献   

10.
The persistence of acoustic cavitation in a pulsed wave ultrasound regime depends upon the ability of cavitation nuclei, i.e., bubbles, to survive the off time between pulses. Due to the dependence of bubble dissolution on surface tension, surface-active agents may affect the stability of bubbles against dissolution. In this study, measurements of bubble dissolution rates in solutions of the surface-active polymer poly(propyl acrylic acid) (PPAA) were conducted to test this premise. The surface activity of PPAA varies with solution pH and concentration of dissolved polymer molecules. The surface tension of PPAA solutions (55-72 dynes/cm) that associated with the polymer surface activity was measured using the Wilhelmy plate technique. Samples of these polymer solutions then were exposed to 1.1 MHz high intensity focused ultrasound, and the dissolution of bubbles created by inertial cavitation was monitored using an active cavitation detection scheme. Analysis of the pulse echo data demonstrated that bubble dissolution time was inversely proportional to the surface tension of the solution. Finally, comparison of the experimental results with dissolution times computed from the Epstein-Plesset equation suggests that the radii of residual bubbles from inertial cavitation increase as the surface tension decreases.  相似文献   

11.
The objective of this paper is the elaboration of liquid structure model for ionic liquids (IL) with cation:anion ratio 1:1. Described model consists of ionic and alkyl domains. The ionic domain is neutral. It has octupole structure: 4 cations and 4 anions are distributed in cube vertexes. The alkyl domains are formed by alkyl chains of cations. Elaborated model explains properties of IL: low melting points, hygroscopicity (including hydrophobic IL), and viscosity.  相似文献   

12.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.  相似文献   

13.
Acoustic cavitation plays an important role in enhancing the reaction rate of chemical processes in sonochemical systems. However, quantification of cavitation intensity in sonochemical systems is generally limited to low frequency systems. In this study, an empirical determination of cavitation yield in high frequency ultrasound systems was performed by measuring the amount of iodine liberated from the oxidation of potassium iodide (KI) solution at 1.7 and 2.4 MHz. Experiments for determining cavitation were carried out at various solute (KI) concentrations under constant temperature, obtained by direct cooling of the solution and variable temperature conditions, in the absence of external cooling. Cavitation yield measurements, reported in this work, extend previously reported results and lend credence to the two step reaction pathway in high frequency systems. Additionally, the concentration of KI and temperature affect the cavitation yield of a system such that the iodine production is proportional to both conditions. It is proposed that direct cooling of sonicated KI solution may be advantageous for optimization of cavitation intensity in high frequency sonochemical reactors.  相似文献   

14.
刘秀梅  贺杰  陆建  倪晓武 《物理学报》2009,58(6):4020-4025
表面张力是影响空泡脉动及空蚀的一个重要因素.对五种不同表面张力液体中空泡脉动(膨胀和收缩)过程进行了研究,并将实验结果与基于空泡生长和溃灭理论的计算结果进行了对比.实验中,用激光作为测试光源,采用光偏转测试系统研究了不同表面张力液体中空泡泡壁运动规律及泡壁速度的变化.结果表明:表面张力对空泡膨胀过程起抑制作用,故液体表面张力愈大,空泡能达到的最大直径越小;表面张力对空泡的收缩过程则起加速作用,液体表面张力愈大,收缩越迅速,空泡泡壁运动速度越大,其所产生的瞬时溃灭压强越大,空化效果越好. 关键词: 表面张力 空泡 光偏转  相似文献   

15.
Acoustic cavitation plays an important role in sonochemical processes and the rate of sonochemical reaction is influenced by sonication parameters. There are several methods to evaluate cavitation activity such as chemical dosimetry. In this study, to comparison between iodide dosimetry and terephthalic acid dosimetry, efficacy of sonication parameters in reactive radical production has been considered by iodide and terephthalic acid dosimetries. For this purpose, efficacy of different exposure parameters on cavitations production by 1 MHz ultrasound has been studied. The absorbance of KI dosimeter was measured by spectrophotometer and the fluorescence of terephthalic acid dosimeter was measured using spectrofluorometer after sonication. The result of experiments related to sonication time and intensity showed that with increasing time of sonication or intensity, the absorbance is increased. It has been shown that the absorbance for continuous mode is remarkably higher than for pulsing mode (p-value < 0.05). Also results show that with increasing the duty cycles of pulsed field, the inertial cavitation activity is increased. With compensation of sonication time or intensity in different duty cycles, no significant absorbance difference were observed unless 20% duty cycle. A significant correlation between the absorbance and fluorescence intensities (count) at different intensity (R = 0.971), different sonication time (R = 0.999) and different duty cycle (R = 0.967) were observed (p-value < 0.05). It is concluded that the sonication parameters having important influences on reactive radical production. These results suggest that there is a correlation between iodide dosimetry and terephthalic acid dosimetry to examine the acoustic cavitation activity in ultrasound field.  相似文献   

16.
Yusheng Liu  Yuxiao Wang  Jing Li 《Ionics》2016,22(9):1681-1686
Molecular dynamics simulations were carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like Au metal nanopore with a pore size of 5.0 nm. The calculations show that the mass and number densities of the confined ILs are oscillatory; the solid-like high density layers are formed in the vicinity of the metal surface. The orientational investigation shows that the imidazolium ring of [BMIM] cations prefers to form a small tilt angle with the pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are remarkably slower than those observed in bulk systems. Our results suggest that the confinement of the Au nanopore can strongly affect the structural and dynamical properties of the confined ILs.  相似文献   

17.
The aim of this work was to evaluate the influence of US on the properties of the fluconazole emulsions prepared using imidazolium-based ILs ([Cn C1im]Br). The effects of the preparation method (mechanical stirring or US), US amplitude, alkyl chain length (of [C12C1im]Br or [C16C1im]Br), and IL concentration on the physicochemical properties were evaluated. Properties such as droplet size, span index, morphology, viscosity encapsulation efficiency, and drug release profile were determined. The results showed that US-prepared emulsions had a smaller droplet size and smaller polydispersity (Span) than those prepared by mechanical stirring. Additionally, the results showed that emulsions prepared with [C16C1im]Br and US had spherical shapes and increased stability compared to emulsions prepared by MS, and also depended on the IL concentration. The emulsion prepared by US at 40% amplitude had increased encapsulation efficiency. US provided a decrease in the viscosity of emulsions containing [C12C1im]Br; however, in general, all emulsions had viscosity close to that of water. Emulsions containing [C16C1im]Br had the lowest viscosities of all the emulsions. The emulsions containing the IL [C16C1im]Br had more controlled release and a lower cumulative percentage of drug release. The IL concentration required to prepare these emulsions was lower than the amount of conventional surfactant required, which highlights the potential synergic effects of ILs and US in preparing emulsions of hydrophobic drugs.  相似文献   

18.
A perturbed hard-sphere equation of state (PHS EOS) was previously proposed to present the volumetric properties of ionic liquids by employing a variable parameter β being a function of acentric factor to justify the range of vdW dispersion forces (M. M. Papari, J. Moghadasi, S. M. Hosseini, F. Akbari, J. Mol. Liq. 158 (2011) 57–60). The main aim of the present study is to revise an attractive part of the preceding EOS by re-evaluating the above-mentioned variable parameter as well as the repulsive term. Two temperature-dependent parameters appearing in the revisited EOS have been determined from the corresponding states correlations using the interfacial properties of ILs, i.e., surface tension and liquid density, both at room temperature. The revisited EOS has been employed to model the volumetric properties of ionic liquids (ILs). The predictive power of the proposed model has been assessed by comparing the results obtained with 2189 experimental data points related to 24 ILs over a broad range of pressures and temperatures. The overall average absolute deviation (AAD) of the calculated densities from literature data was found to be 0.62 %. Furthermore, the revisited PHS EOS has been employed to model the volumetric properties of 23 mixtures including IL + IL and IL+ solvent over the vast range of temperatures. From 1580 data points of the binary mixtures of interest, the AAD of the correlated densities from the measurements was found to be 0.47 %.  相似文献   

19.
Polyarylsufone polymers are engineering thermoplastics that can only be dissolved in polar solvents. We found that polyarylsufone has good solubility in ionic liquid (IL) with IL being a new kind of green solvent; thus, ILs are potential substitutes for conventional molecular solvents. However, the thermodynamics in ionic liquids are different then those in conventional solvents, so ILs as solvents have attracted enormous attention recently. Rheological behavior is an important factor in polymer material processing. The rheological behavior of polyarylsulfone (PASF) in both N, N,‐dimethylacetamide (DMAc) and ionic liquid 1‐butyl‐3‐methylimidazolium chloride [(Bmim) Cl] were studied in this paper as a function of concentration for concentrated solutions. It is interesting that the rheological behavior of the PASF/(Bmim) Cl solution is very different from that of PASF/DMAc solutions. In DMAc, as concentration increases viscosity increases, while the rheological behavior of the PASF/(Bmim) Cl solution exhibits a maximum in the viscosity‐concentration plots.  相似文献   

20.
It is important to study the interaction of ionic liquids (ILs) with protein for the applications of ILs in biochemical process, and help the researchers to choose and design the better ILs to serve as a solvent. In this work, the interaction between 1-alkyl-3-methylimidazolium bromide [Cnmim]Br (n=4, 6, 8, 10) and bovine serum albumin (BSA) was systematically investigated for the first time by multi-spectroscopic approach (fluorescence, UV–vis and FT-IR spectroscopy) and density functional theory (DFT). [Cnmim]Br (n=4, 6, 8, 10) can bind to BSA by H-bond interaction between their cationic headgroups and Asp/Glu amino acid residue at the surface of BSA, and hydrophobic interaction between their hydrocarbon chains and the hydrophobic amino acid residues in the interior of BSA. On the basis of thermodynamic parameters and the similar structure of [Cnmim]Br (n=4, 6, 8, 10), it can be inferred that the hydrophobic interaction plays a major role in the interaction of [C10mim]Br with BSA, while the hydrogen bond and van der Waals force play a major role in the interaction of [Cnmim]Br (n=4, 6, 8) with BSA. Synchronous fluorescence and FT-IR spectra indicate that [C10mim]Br could markedly change the secondary structure of BSA, while [Cnmim]Br (n=4, 6, 8) could slightly change the secondary structure of BSA. The results allowed us to understand (i) the effect of the alkyl chain length of the cation on the mechanism of ILs–protein interaction and (ii) the effect of the alkyl chain length of the cation on the protein secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号