首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
杨春燕  张蓉 《中国物理 B》2014,23(2):26301-026301
A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F point in the Brillouin zone. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are derived based on the calculated elastic constants. The bulk modulus B = 153 GPa and shear modulus G = 81GPa are in good agreement with available experimental data. Poisson's ratio v = 0.275 suggests that Sr0.sCa0.sTiO3 should be classified as being a ductile material. Using the electronic band structure and density of states, we analyze the interband contribution to the optical properties. The real and imaginary parts of the dielectric function, as well as the optical properties such as the optical absorption coefficient, refractive index, extinction coefficient, and energy-loss spectrum are calculated. The static dielectric constant ε1 (0) and the refractive index n(0) are also investigated.  相似文献   

2.
Effects of Cr, Mo, and Nb on the ferritic stainless steel ]2(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Structural stability is lowered by Cr doping and enhanced by Mo and Nb doping. A ranking on the effect of solute atoms enhancing the cohesive strength of the grain boundary, from the strongest to the weakest is Cr, Mo, and Nb. Cr clearly prefers to locate in the intragranular region of Fe rather than in the grain boundary, while Mo and Nb tend to segregate to the grain boundary. Solute Mo and Nb atoms possess a strong driving force for segregation to the grain boundary from the intragranular region, which increases the grain boundary embrittlement. For Mo- and Nb-doped systems, a remarkable quantity of electrons accumulate in the region close to Mo (Nb). Therefore, the bond strength may increase. With Cr, Mo, and Nb additions, an anti-parallel island is formed around the center of the grain boundary.  相似文献   

3.
The structural, electronic, and optical properties of rutile-, CaC12-, and PdF2-ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice constants are in reasonable agreement with the available experimental and other calculated results. The band structures show that the rutile-, CaCl2-, and PdF2-ZnF2 are all direct band insulator. The band gaps are 3.63, 3.62, and 3.36 eV, respectively. The contribution of the different bands was analyzed by the density of states. The Mulliken population analysis is performed. A mixture of covalent and weak ionic chemical bonding exists in ZnF2. Furthermore, in order to understand the optical properties of ZnF2, the dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, and optical reflectivity are also performed in the energy range from 0 to 30 eV. It is found that the main absorption parts locate in the UV region for ZnF2. This is the first quantitative theoretical prediction of the electronic and optical properties of ZnF2 compound, and it still awaits experimental confirmation.  相似文献   

4.
First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimented data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wave velocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than the experimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Sip states indicates a certain covalency of the Os-Si bonds.  相似文献   

5.
The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnOl_xSex alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method in the rocksalt (B 1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO1_xSex are evaluated in the range 0 〈 x 〈 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O 2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.  相似文献   

6.
In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.  相似文献   

7.
Electronic and optical properties of rock-salt AIN under high pressure are investigated by first -principles method based on the plane-wave basis set. Analysis of band structures suggests that the rock-salt AIN has an indirect gap of 4.53 eV, which is in good agreement with other results. By investigating the effects of pressure on the energy gap, the different movement of conduction band at X point below and above 22.5 GPa is predicted. The optical properties including dielectric function, absorption, reflectivity, and refractive index are also calculated and analyzed. It is found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does the transparence affected by the pressure. Furthermore, the curve of optical spectrum will shift to high energy area (blue shift) with increasing pressure.  相似文献   

8.
The energy band structures, density of states, and optical properties of IliA-doped wurtzite Mg0.25Zn0.75O (IIIA= A1, Ga, In) are investigated by a first-principles method based on the density functional theory. The calculated results show that the optical bandgaps of Mg0.25Zn0.75O:IIIA are larger than those of Mg0.25Zn0.75O because of the Burstein-Moss effect and the bandgap renormalization effect. The electron effective mass values of Mg0.25Zn0.75O:IIIA are heavier than those of Mgo.25Zno.750, which is in agreement with the previous experimental result. The formation energies of MgZnO:Al and MgZnO:Ga are smaller than that of MgZnO:In, while their optical bandgaps are larger, so MgZnO:Al and MgZnO:Ga are suitable to be fabricated and used as transparent conductive oxide films in the ultra-violet (UV) and deep UV optoelectronic devices.  相似文献   

9.
The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B~ are 3.872/~, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theo- retical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg = 5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.  相似文献   

10.
薛丽  徐斌  易林 《中国物理 B》2014,(3):463-468
The electronic structures of solid solutions CuGal_xlnxTe2 are systematically investigated using the full-potential all-electron linearized augmented plane wave method. The calculated lattice parameters almost linearly increase with the increase of the In composition, which are in good agreement with the available experimental results. The calculated band structures with the modified Becke-Johnson potential show that all solid solutions are direct gap conductors. The band gap decreases linearly with In composition increasing. Based on the electronic structure calculated, we investigate the thermoelectric properties by the semi-classical Boltzmann transport theory. The results suggest that when Ga is replaced by In, the bipolar effect of Seebeck coefficient S becomes very obvious. The Seebeck coefficient even changes its sign from positive to negative for p-type doping at low carrier concentrations. The optimal p-type doping concentrations have been estimated based on the predicted maximum values of the power factor divided by the scattering time.  相似文献   

11.
郝爱民  白静 《中国物理 B》2013,(10):460-462
Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density func- tional theory (DFT) with the LDA + U method. Our results show that CeN is a half-metal. The majority-spin electron band structure has metallic intersections, whereas the minority-spin electron band structure has a semiconducting gap straddling the Fermi level. A small indirect energy gap occurs between X and W. The calculated magnetic moment is 0.99 μb per unit cell.  相似文献   

12.
We studied the electronic structure of the two new transition-metal carbodiimides CoNCN and NiNCN using first-principles method, which is based on density-functional theory (DFT). The density of states (DOS), the total energy of the cell and the spin magnetic moment of CoNCN and NiNCN were calculated. The calculations reveal that the compound CoNCN and NiNCN have hall-metallic properties in ferromagnetic ground state, and the spin magnetic moment per molecule is about 7.000 μB and 6.000 μB for CoNCN and NiNCN, respectively.  相似文献   

13.
Uranium is a member of Actinides and plays important role in nuclear science and technology. Electronic and structural investigations of actinide compounds attract major interest in science. The electronic structure and chemical bonding of coffinite USiO4 are investigated by X-ray Absorption Fine Structure spectroscopy (XAFS). U L3- edge absorption spectrum in USiO4 is compared with U L3-edge spectra in UO2 and UTe due to their different electronic and chemical structures. The study presents XANES (x-ray Absorption Near-Edge Structure) and Extended XAFS (EXAFS) calculations of USiO4 thin films. The full multiple scattering approach has been applied to the calculation of U L3 edge XANES spectra of USiO4, UO2 and UTe, based on different choices of one electron potentials according to Uranium coordinations by using the real space multiple scattering method FEFF 8.2 code.  相似文献   

14.
The electronic structures of BaMgF 4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slater theory,using a numerically discrete variational (DV-Xα) method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band. The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV,which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.  相似文献   

15.
Since there may exist dark matter particles ν and δ with mass - 10^-1 e V in the universe, the superstructures with a scale of 10^19 solar masses (large number A - 10^19) appeared during the era near and before the hydrogen recombination. Since there are superstructures in the universe, there may be no necessity for the existence of dark energy. For checking the superstructure in the universe by CMB anisotropy, we need to measure CMB angular power spectrum especially around ten degrees across the sky- in more details, While neutrino u is related to electroweak unification, the fourth stable elementary particle 6 may be related to strong-gravity unification, which suggests p + p^- → n + δ^- and that some new baryons appeared in the TeV region.  相似文献   

16.
After introducing some of the basic definitions and results from the theory of groupoid and Lie algebroid, we investigate the discrete Lagrangian mechanics from the viewpoint of groupoid theory and give the connection between groupoids variation and the methods of the first and second discrete variational principles.  相似文献   

17.
The microstructure evolution of plastic-bonded explosives(PBXs) after thermal stimulus plays a key role in PBX performance. In this paper, the nanoscale pores of thermal-treated octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine(HMX)-based PBXs with different HMX particle sizes [approximately 40(FHP) and 100 μm(LHP)] were measured using smallangle X-ray scattering(SAXS). No obvious pore variations were found in the LHP samples heated at 160℃ for 6 h,whereas the amount of pores of FHP decreased when subjected to 160℃ for 6 h. At 180℃, the average pore radii of FHP and LHP decreased from approximately 45 nm to 25 nm, and the total pore volume increased distinctively because of phase transformation. The LHP sample reached a high level of pore content after being held at 180℃ for 1 h, whereas FHP required 3 h. Both FHP and LHP had relatively high pore volumes when subjected to 200℃ for 1 and 3 h.  相似文献   

18.
In this study, the effects of doping by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions on dielectric and infrared properties of SrTiO3 (STO) single crystals are investigated. It is well known that doping of the SrTiO3 can change the dielectric properties of the STO from an insulator to an n-type semiconductor, and even to a metallic conductor. Dielectric and infrared (IR) properties of the undoped STO and doped STO single crystals are analyzed using dielectric spectroscopy (80 kHz-5 MHz), transmission (200 cm^-1-4000 cm^-1), and reflection spectroscopy (50 cm^-1-2000 cm^-1). It is found that doping by the 3d ions reduces the value of dielectric permittivity, but the trend of temperature dependence of the dielectric permittivity remains almost unchanged. On the other hand, dielectric spectroscopy measurements for samples doped by 4f ions show the anomalous behaviors of the dielectric permittivity at temperatures around the temperature of the structural phase transition. There are two fractures of temperature dependences of inverse dielectric permittivity εr^-1 (T). Transmittance spectroscopy measurements show that there are differences in the shape of the spectrum in the mid-IR region between the undoped STO and the one doped by 4f ions. The differences in the reflectance spectrum between the STO:Nd and STO are analyzed in detail.  相似文献   

19.
To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC-DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra- and inter-molecular hydrogen bond- ing rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter- and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C-H bond is observed in solid RDX, which may lead to further decomposition and even detonation.  相似文献   

20.
First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lam6 constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号