首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the length of the longest directed cycle in the sparse random digraph , constant. We show that for large there exists a function such that a.s. The function where is a polynomial in . We are only able to explicitly give the values , although we could in principle compute any .  相似文献   

2.
Write for the cycle space of a graph G, for the subspace of spanned by the copies of the κ‐cycle in G, for the class of graphs satisfying , and for the class of graphs each of whose edges lies in a . We prove that for every odd and , so the 's of a random graph span its cycle space as soon as they cover its edges. For κ = 3 this was shown in [6].  相似文献   

3.
Fix a palette of colors, a graph with maximum degree , and a subset of the edge set with minimum distance between edges at least . If the edges of are arbitrarily precoloured from , then there is guaranteed to be a proper edge-coloring using only colors from that extends the precolouring on to the entire graph. This result is a first general precolouring extension form of Vizing's theorem, and it proves a conjecture of Albertson and Moore under a slightly stronger distance requirement. We also show that the condition on the distance can be lowered to when the graph contains no cycle of length .  相似文献   

4.
The - deck of a graph is its multiset of subgraphs induced by vertices; we study what can be deduced about a graph from its -deck. We strengthen a result of Manvel by proving for that when is large enough ( suffices), the -deck determines whether an -vertex graph is connected ( suffices when , and cannot suffice). The reconstructibility of a graph with vertices is the largest such that is determined by its -deck. We generalize a result of Bollobás by showing for almost all graphs. As an upper bound on , we have . More generally, we compute whenever , which involves extending a result of Stanley. Finally, we show that a complete -partite graph is reconstructible from its -deck.  相似文献   

5.
Given graphs and and a positive integer , say that is -Ramsey for , denoted , if every -coloring of the edges of contains a monochromatic copy of . The size-Ramsey number of a graph is defined to be . Answering a question of Conlon, we prove that, for every fixed , we have , where is the th power of the -vertex path (ie, the graph with vertex set and all edges such that the distance between and in is at most ). Our proof is probabilistic, but can also be made constructive.  相似文献   

6.
We study the q‐state ferromagnetic Potts model on the n‐vertex complete graph known as the mean‐field (Curie‐Weiss) model. We analyze the Swendsen‐Wang algorithm which is a Markov chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor large sets of vertices in one step and potentially overcomes obstacles that inhibit single‐site Glauber dynamics. Long et al. studied the case q = 2, the Swendsen‐Wang algorithm for the mean‐field ferromagnetic Ising model, and showed that the mixing time satisfies: (i) for , (ii) for , (iii) for , where βc is the critical temperature for the ordered/disordered phase transition. In contrast, for there are two critical temperatures that are relevant. We prove that the mixing time of the Swendsen‐Wang algorithm for the ferromagnetic Potts model on the n‐vertex complete graph satisfies: (i) for , (ii) for , (iii) for , and (iv) for . These results complement refined results of Cuff et al. on the mixing time of the Glauber dynamics for the ferromagnetic Potts model.  相似文献   

7.
Let G be a 2k-edge-connected graph with and let for every . A spanning subgraph F of G is called an L-factor, if for every . In this article, we show that if for every , then G has a k-edge-connected L-factor. We also show that if and for every , then G has a k-edge-connected L-factor.  相似文献   

8.
A graph is matching-covered if every edge of is contained in a perfect matching. A matching-covered graph is strongly coverable if, for any edge of , the subgraph is still matching-covered. An edge subset of a matching-covered graph is feasible if there exist two perfect matchings and such that , and an edge subset with at least two edges is an equivalent set if a perfect matching of contains either all edges in or none of them. A strongly matchable graph does not have an equivalent set, and any two independent edges of form a feasible set. In this paper, we show that for every integer , there exist infinitely many -regular graphs of class 1 with an arbitrarily large equivalent set that is not switching-equivalent to either or , which provides a negative answer to a problem of Lukot’ka and Rollová. For a matching-covered bipartite graph , we show that has an equivalent set if and only if it has a 2-edge-cut that separates into two balanced subgraphs, and is strongly coverable if and only if every edge-cut separating into two balanced subgraphs and satisfies and .  相似文献   

9.
Let be a digraph which may contain loops, and let be a loopless digraph with a coloring of its arcs . An -walk of is a walk of such that is an arc of , for every . For , we say that reaches by -walks if there exists an -walk from to in . A subset is a kernel by -walks of if every vertex in reaches by -walks some vertex in , and no vertex in can reach another vertex in by -walks. A panchromatic pattern is a digraph such that every -arc-colored digraph has a kernel by -walks. In this study, we prove that every digraph is either a panchromatic pattern, or the problem of determining whether an arc-colored digraph has a kernel by -walks is -complete.  相似文献   

10.
A colouring of a graph is a function such that for every . A -regular list assignment of is a function with domain such that for every , is a subset of of size . A colouring of respects a -regular list assignment of if for every . A graph is -choosable if for every -regular list assignment of , there exists a colouring of that respects . We may also ask if for a given -regular list assignment of a given graph , there exists a colouring of that respects . This yields the -Regular List Colouring problem. For , we determine a family of classes of planar graphs, such that either -Regular List Colouring is -complete for instances with , or every is -choosable. By using known examples of non--choosable and non--choosable graphs, this enables us to classify the complexity of -Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs, and planar graphs with no -cycles and no -cycles. We also classify the complexity of -Regular List Colouring and a number of related colouring problems for graphs with bounded maximum degree.  相似文献   

11.
12.
The strong chromatic index of a graph , denoted by , is defined as the least number of colors in a coloring of edges of , such that each color class is an induced matching (or: if edges and have the same color, then both vertices of are not adjacent to any vertex of ). A graph is a unit distance graph in if vertices of can be uniquely identified with points in , so that is an edge of if and only if the Euclidean distance between the points identified with and is 1. We would like to find the largest possible value of , where is a unit distance graph (in and ) of maximum degree . We show that , where is a unit distance graph in of maximum degree . We also show that the maximum possible size of a strong clique in unit distance graph in is linear in and give a tighter result for unit distance graphs in the plane.  相似文献   

13.
A graph G is said to be 2-divisible if for all (nonempty) induced subgraphs H of G, can be partitioned into two sets such that and . (Here denotes the clique number of G, the number of vertices in a largest clique of G). A graph G is said to be perfectly divisible if for all induced subgraphs H of G, can be partitioned into two sets such that is perfect and . We prove that if a graph is -free, then it is 2-divisible. We also prove that if a graph is bull-free and either odd-hole-free or P5-free, then it is perfectly divisible.  相似文献   

14.
Let be the collection of all -subsets of an -set . Given a coloring (partition) of a set , we are interested in finding conditions under which this coloring is extendible to a coloring of so that the number of times each element of appears in each color class (all sets of the same color) is the same number . The case was studied by Sylvester in the 18th century and remained open until the 1970s. The case is extensively studied in the literature and is closely related to completing partial symmetric Latin squares. For , we settle the cases , and completely. Moreover, we make partial progress toward solving the case where . These results can be seen as extensions of the famous Baranyai’s theorem, and make progress toward settling a 40-year-old problem posed by Cameron.  相似文献   

15.
Given two graphs and , a graph is -free if it contains no induced subgraph isomorphic to or . Let and be the path on vertices and the cycle on vertices, respectively. In this paper we show that for any -free graph it holds that , where and are the chromatic number and clique number of , respectively. Our bound is attained by several graphs, for instance, the 5-cycle, the Petersen graph, the Petersen graph with an additional universal vertex, and all -critical -free graphs other than (see Hell and Huang [Discrete Appl. Math. 216 (2017), pp. 211–232]). The new result unifies previously known results on the existence of linear -binding functions for several graph classes. Our proof is based on a novel structure theorem on -free graphs that do not contain clique cutsets. Using this structure theorem we also design a polynomial time -approximation algorithm for coloring -free graphs. Our algorithm computes a coloring with colors for any -free graph in time.  相似文献   

16.
The edge‐percolation and vertex‐percolation random graph models start with an arbitrary graph G, and randomly delete edges or vertices of G with some fixed probability. We study the computational complexity of problems whose inputs are obtained by applying percolation to worst‐case instances. Specifically, we show that a number of classical ‐hard problems on graphs remain essentially as hard on percolated instances as they are in the worst‐case (assuming ). We also prove hardness results for other ‐hard problems such as Constraint Satisfaction Problems and Subset‐Sum, with suitable definitions of random deletions. Along the way, we establish that for any given graph G the independence number and the chromatic number are robust to percolation in the following sense. Given a graph G, let be the graph obtained by randomly deleting edges of G with some probability . We show that if is small, then remains small with probability at least 0.99. Similarly, we show that if is large, then remains large with probability at least 0.99. We believe these results are of independent interest.  相似文献   

17.
Mossel and Ross raised the question of when a random coloring of a graph can be reconstructed from local information, namely, the colorings (with multiplicity) of balls of given radius. In this article, we are concerned with random 2-colorings of the vertices of the -dimensional hypercube, or equivalently random Boolean functions. In the worst case, balls of diameter are required to reconstruct. However, the situation for random colorings is dramatically different: we show that almost every 2-coloring can be reconstructed from the multiset of colorings of balls of radius 2. Furthermore, we show that for , almost every -coloring can be reconstructed from the multiset of colorings of 1-balls.  相似文献   

18.
We derive a correspondence between the eigenvalues of the adjacency matrix and the signless Laplacian matrix of a graph when is -biregular by using the relation . This motivates asking when it is possible to have for a polynomial, , and matrices associated to a graph . It turns out that, essentially, this can only happen if is either regular or biregular.  相似文献   

19.
The size Ramsey number of two graphs and is the smallest integer such that there exists a graph on edges with the property that every red-blue colouring of the edges of yields a red copy of or a blue copy of . In 1981, Erdős observed that and he conjectured that this upper bound on is sharp. In 1983, Faudree and Sheehan extended this conjecture as follows: They proved the case . In 2001, Pikhurko showed that this conjecture is not true for and , by disproving the mentioned conjecture of Erdős. Here, we prove Faudree and Sheehan's conjecture for a given and .  相似文献   

20.
Given a bipartite graph with bipartition each spanning tree in has a degree sequence on and one on . Löhne and Rudloff showed that the number of possible degree sequences on equals the number of possible degree sequences on . Their proof uses a non-trivial characterization of degree sequences by -draconian sequences based on polyhedral results of Postnikov. In this paper, we give a purely graph-theoretic proof of their result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号